Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer

Abstract

Bone metastasis of lung adenocarcinoma (AC) is a frequent complication of advanced disease. The purpose of this study was to identify key mediators conferring robust prometastatic activity with clinical significance. We isolated highly metastatic subpopulations (HMS) using a previously described in vivo model of lung AC bone metastasis. We performed transcriptomic profiling of HMS and stringent bioinformatics filtering. Functional validation was assessed by overexpression and lentiviral silencing of single, double and triple combination in vivo and in vitro. We identified HDAC4, PITX1 and ROBO1 that decreased bone metastatic ability after their simultaneous abrogation. These effects were solely linked to defects in osseous colonization. The molecular mechanisms related to bone colonization were mediated by non-cell autonomous effects that include the following: (1) a marked decrease in osteoclastogenic activity in vitro and in vivo, an effect associated with reduced pro-osteoclastogenic cytokines IL-11 and PTHrP expression levels, as well as decreased in vitro expression of stromal rankl in conditions mimicking tumor–stromal interactions; (2) an abrogated response to TGF-β signaling by decreased phosphorylation and levels of Smad2/3 in tumor cells and (3) an impaired metalloproteolytic activity in vitro. Interestingly, coexpression of HDAC4 and PITX1 conferred high prometastatic activity in vivo. Further, levels of both genes correlated with patients at higher risk of metastasis in a clinical lung AC data set and with a poorer clinical outcome. These findings provide functional and clinical evidence that this metastatic subset is an important determinant of osseous colonization. These data suggest novel therapeutic targets to effectively block lung AC bone metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AC:

adenocarcinoma

BLI:

bioluminescence imaging

CM:

conditioned medium

i.c.:

intracardiac

i.t.:

intratibial

KD:

knockdown

MMP:

matrix metalloprotease

SCDC:

single-cell-derived colonies

TRAP:

Tartrate-resistant acid phosphatase

References

  1. Feld R, Rubinstein LV, Weisenberger TH . Sites of recurrence in resected stage I non-small-cell lung cancer: a guide for future studies. J Clin Oncol 1984; 2: 1352–1358.

    Article  CAS  Google Scholar 

  2. Fry WA, Menck HR, Winchester DP . The National Cancer Data Base report on lung cancer. Cancer 1996; 77: 1947–1955.

    Article  CAS  Google Scholar 

  3. Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG et al. Non-small-cell lung cancer. Lancet 2011; 378: 1727–1740.

    Article  Google Scholar 

  4. Weilbaecher KN, Guise TA, McCauley LK . Cancer to bone: a fatal attraction. Nat Rev Cancer 2011; 11: 411–425.

    Article  CAS  Google Scholar 

  5. Coleman RE . Skeletal complications of malignancy. Cancer 1997; 80: 1588–1594.

    Article  CAS  Google Scholar 

  6. Nguyen DX, Massague J . Genetic determinants of cancer metastasis. Nat Rev Genet 2007; 8: 341–352.

    Article  CAS  Google Scholar 

  7. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98: 1544–1549.

    Article  CAS  Google Scholar 

  8. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103: 197–206.

    Article  CAS  Google Scholar 

  9. Vicent S, Luis-Ravelo D, Anton I, Garcia-Tunon I, Borras-Cuesta F, Dotor J et al. A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Cancer Res 2008; 68: 2275–2285.

    Article  CAS  Google Scholar 

  10. Valencia K, Ormazabal C, Zandueta C, Luis-Ravelo D, Anton I, Pajares MJ et al. Inhibition of Collagen Receptor Discoidin Domain Receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res 2012; 18: 969–980.

    Article  CAS  Google Scholar 

  11. Antón I, Molina E, Luis-Ravelo D, Zandueta C, Valencia K, Ormazabal C et al. Receptor of activated protein c promotes metastasis and correlates with clinical outcome in lung adenocarcinoma. Am J Resp Crit Care Med 2012; 186: 96–105.

    Article  Google Scholar 

  12. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 2009; 138: 51–62.

    Article  CAS  Google Scholar 

  13. Catena R, Luis-Ravelo D, Anton I, Zandueta C, Salazar-Colocho P, Larzabal L et al. PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis. Cancer Res 2011; 71: 164–174.

    Article  CAS  Google Scholar 

  14. Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 2009; 23: 1882–1894.

    Article  CAS  Google Scholar 

  15. Luis-Ravelo D, Anton I, Vicent S, Hernandez I, Valencia K, Zandueta C et al. Tumor-stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models. Clin Exp Metastasis 2011; 28: 779–791.

    Article  CAS  Google Scholar 

  16. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 2008; 14: 822–827.

    Article  CAS  Google Scholar 

  17. Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res 2011; 26: 1447–1456.

    Article  CAS  Google Scholar 

  18. Sapkota G, Knockaert M, Alarcon C, Montalvo E, Brivanlou AH, Massague J . Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J Biol Chem 2006; 281: 40412–40419.

    Article  CAS  Google Scholar 

  19. Justilien V, Regala RP, Tseng IC, Walsh MP, Batra J, Radisky ES et al. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PLoS One 2012; 7: e35040.

    Article  CAS  Google Scholar 

  20. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 2004; 119: 555–566.

    Article  CAS  Google Scholar 

  21. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN . CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 2006; 116: 1853–1864.

    Article  CAS  Google Scholar 

  22. Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D et al. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 2008; 19: 4062–4075.

    Article  CAS  Google Scholar 

  23. Stronach EA, Alfraidi A, Rama N, Datler C, Studd JB, Agarwal R et al. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res 2011; 71: 4412–4422.

    Article  CAS  Google Scholar 

  24. Reddy SD, Pakala SB, Molli PR, Sahni N, Karanam NK, Mudvari P et al. Metastasis-associated protein 1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates phosphatase and tensin homolog gene expression and function. J Biol Chem 2012; 287: 27843–27850.

    Article  CAS  Google Scholar 

  25. Marcil A, Dumontier E, Chamberland M, Camper SA, Drouin J . Pitx1 and Pitx2 are required for development of hindlimb buds. Development 2003; 130: 45–55.

    Article  CAS  Google Scholar 

  26. Kolfschoten IG, van Leeuwen B, Berns K, Mullenders J, Beijersbergen RL, Bernards R et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 2005; 121: 849–858.

    Article  CAS  Google Scholar 

  27. Lord RV, Brabender J, Wickramasinghe K, DeMeester SR, Holscher A, Schneider PM et al. Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett’s esophagus and Barrett’s-associated adenocarcinoma. Surgery 2005; 138: 924–931.

    Article  Google Scholar 

  28. Chen Y, Knosel T, Ye F, Pacyna-Gengelbach M, Deutschmann N, Petersen I . Decreased PITX1 homeobox gene expression in human lung cancer. Lung Cancer 2007; 55: 287–294.

    Article  Google Scholar 

  29. Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MF . Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 2002; 4: 798–805.

    Article  CAS  Google Scholar 

  30. Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J . Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 2007; 9: 883–892.

    Article  CAS  Google Scholar 

  31. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  Google Scholar 

  32. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009; 459: 1005–1009.

    Article  CAS  Google Scholar 

  33. Yang XM, Han HX, Sui F, Dai YM, Chen M, Geng JG . Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis. Biochem Biophys Res Commun 2010; 396: 571–577.

    Article  CAS  Google Scholar 

  34. Labbe E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S et al. Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 2007; 67: 75–84.

    Article  CAS  Google Scholar 

  35. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  Google Scholar 

  36. Lecanda F . Tumor-stroma: tumor microenvironment as a target to combat metastasis. Dis Model Mech 2011; 8: 87–93.

    CAS  Google Scholar 

  37. Iguchi H, Onuma E, Sato K, Ogata E . Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int J Cancer 2001; 94: 24–27.

    Article  CAS  Google Scholar 

  38. Hernandez I, Moreno JL, Zandueta C, Montuenga L, Lecanda F . Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 2010; 29: 3758–3769.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Core Histology Unit and Imaging Group facilities for their outstanding technical assistance. We also thank the Proteomics, Genomics and Bioinformatics Unit at the CIMA. This work was supported by ‘UTE project FIMA’ agreement, The Cancer Research Thematic Network of the Health Institute Carlos III (RTICC RD06/0020/0066), PI042282, SAF-2009–11280, SAF2012-40056, grants 67/2005 and 09/2009 from the Government of Navarra, and ‘La Caixa Foundation’ to FL. DL-R was supported by the FIMA and FPU. IA was funded by the Basque Government. JDLR was supported by FIS-ISCIII grant PI12/00624. SV is an investigator of the Ramon y Cajal Program (MICINN, RYC-2011-09042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Lecanda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luis-Ravelo, D., Antón, I., Zandueta, C. et al. A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene 33, 5090–5099 (2014). https://doi.org/10.1038/onc.2013.440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.440

Keywords

This article is cited by

Search

Quick links