Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EYA4 is inactivated biallelically at a high frequency in sporadic lung cancer and is associated with familial lung cancer risk

Abstract

In an effort to identify novel biallelically inactivated tumor suppressor genes (TSGs) in sporadic invasive and preinvasive non-small-cell lung cancer (NSCLC) genomes, we applied a comprehensive integrated multiple ‘omics’ approach to investigate patient-matched, paired NSCLC tumor and non-malignant parenchymal tissues. By surveying lung tumor genomes for genes concomitantly inactivated within individual tumors by multiple mechanisms, and by the frequency of disruption in tumors across multiple cohorts, we have identified a putative lung cancer TSG, Eyes Absent 4 (EYA4). EYA4 is frequently and concomitantly deleted, hypermethylated and underexpressed in multiple independent lung tumor data sets, in both major NSCLC subtypes and in the earliest stages of lung cancer. We found that decreased EYA4 expression is not only associated with poor survival in sporadic lung cancers but also that EYA4 single-nucleotide polymorphisms are associated with increased familial cancer risk, consistent with EYA4s proximity to the previously reported lung cancer susceptibility locus on 6q. Functionally, we found that EYA4 displays TSG-like properties with a role in modulating apoptosis and DNA repair. Cross-examination of EYA4 expression across multiple tumor types suggests a cell-type-specific tumorigenic role for EYA4, consistent with a tumor suppressor function in cancers of epithelial origin. This work shows a clear role for EYA4 as a putative TSG in NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095–2128.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  3. Knudson AG Jr. . Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–823.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nagayama K, Kohno T, Sato M, Arai Y, Minna JD, Yokota J . Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes Chromosomes Cancer 2007; 46: 1000–1010.

    Article  CAS  PubMed  Google Scholar 

  5. Selamat SA, Galler JS, Joshi AD, Fyfe MN, Campan M, Siegmund KD et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS One 2011; 6: e21443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Osborn NK, Zou H, Molina JR, Lesche R, Lewin J, Lofton-Day C et al. Aberrant methylation of the eyes absent 4 gene in ulcerative colitis-associated dysplasia. Clin Gastroenterol Hepatol 2006; 4: 212–218.

    Article  CAS  PubMed  Google Scholar 

  7. Oster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtroder K et al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer 2011; 129: 2855–2866.

    Article  CAS  PubMed  Google Scholar 

  8. Kim YH, Lee HC, Kim SY, Yeom YI, Ryu KJ, Min BH et al. Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann Surg Oncol 2011; 18: 2338–2347.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kisiel JB, Yab TC, Taylor WR, Chari ST, Petersen GM, Mahoney DW et al. Stool DNA testing for the detection of pancreatic cancer: assessment of methylation marker candidates. Cancer 2012; 118: 2623–2631.

    Article  CAS  PubMed  Google Scholar 

  10. Thu KL, Radulovich N, Becker-Santos DD, Pikor LA, Pusic A, Lockwood WW et al. SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/beta-catenin signaling. Oncogene 2013; 32: 279–288.

    Google Scholar 

  11. Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, Chu A et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    Article  CAS  Google Scholar 

  12. Thu KL, Vucic EA, Chari R, Zhang W, Lockwood WW, English JC et al. Lung adenocarcinoma of never smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of genomic instability. PLoS One 2012; 7: e33003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 2007; 450: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chitale D, Gong Y, Taylor BS, Broderick S, Brennan C, Somwar R et al. An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene 2009; 28: 2773–2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weiss J, Sos ML, Seidel D, Peifer M, Zander T, Heuckmann JM et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2010; 2: 62ra93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.

    Article  CAS  PubMed  Google Scholar 

  17. Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A et al. Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One 2008; 3: e1651.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thusberg J, Olatubosun A, Vihinen M . Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 2011; 32: 358–368.

    Article  PubMed  Google Scholar 

  19. Lonergan KM, Chari R, Coe BP, Wilson IM, Tsao MS, Ng RT et al. Transcriptome profiles of carcinoma-in-situ and invasive non-small cell lung cancer as revealed by SAGE. PLoS One 2010; 5: e9162.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sadatomi D, Tanimura S, Ozaki K, Takeda K . Atypical protein phosphatases: emerging players in cellular signaling. Int J Mol Sci 2013; 14: 4596–4612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okabe Y, Sano T, Nagata S . Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 2009; 460: 520–524.

    Article  CAS  PubMed  Google Scholar 

  23. MacPhail SH, Banath JP, Yu TY, Chu EH, Lambur H, Olive PL . Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat biology 2003; 79: 351–358.

    Article  CAS  Google Scholar 

  24. Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL . The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development. Cell 1997; 91: 881–891.

    Article  CAS  PubMed  Google Scholar 

  25. Clark SW, Fee BE, Cleveland JL . Misexpression of the eyes absent family triggers the apoptotic program. J Biol Chem 2002; 277: 3560–3567.

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Sano T, Guan Y, Nagata S, Hoffmann JA, Fukuyama H . Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif. PLoS One 2012; 7: e42725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 2012; 21: 655–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zou H, Osborn NK, Harrington JJ, Klatt KK, Molina JR, Burgart LJ et al. Frequent methylation of eyes absent 4 gene in Barrett's esophagus and esophageal adenocarcinoma. Cancer Epidemiol Biomarkers Prev 2005; 14: 830–834.

    Article  CAS  PubMed  Google Scholar 

  29. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B et al. Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 2002; 87: 1262–1267.

    CAS  PubMed  Google Scholar 

  31. Miller SJ, Lan ZD, Hardiman A, Wu J, Kordich JJ, Patmore DM et al. Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene 2010; 29: 368–379.

    Article  CAS  PubMed  Google Scholar 

  32. Boelens MC, van den Berg A, Fehrmann RS, Geerlings M, de Jong WK, te Meerman GJ et al. Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer. J Pathol 2009; 218: 182–191.

    Article  CAS  PubMed  Google Scholar 

  33. You M, Wang D, Liu P, Vikis H, James M, Lu Y et al. Fine mapping of chromosome 6q23–25 region in familial lung cancer families reveals RGS17 as a likely candidate gene. Clin Cancer Res 2009; 15: 2666–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, Wiest JS et al. A major lung cancer susceptibility locus maps to chromosome 6q23–25. Am J Hum Genet 2004; 75: 460–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amos CI, Pinney SM, Li Y, Kupert E, Lee J, de Andrade MA et al. A susceptibility locus on chromosome 6q greatly increases lung cancer risk among light and never smokers. Cancer Res 2010; 70: 2359–2367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M et al. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res 2012; 22: 1197–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kisiel JB, Yab TC, Nazer Hussain FT, Taylor WR, Garrity-Park MM, Sandborn WJ et al. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Therap 2013; 37: 546–554.

    Article  CAS  Google Scholar 

  38. Sellers TA, Bailey-Wilson JE, Elston RC, Wilson AF, Elston GZ, Ooi WL et al. Evidence for Mendelian inheritance in the pathogenesis of lung cancer. J Natl Cancer Instit 1990; 82: 1272–1279.

    Article  CAS  Google Scholar 

  39. Sellers TA, Potter JD, Bailey-Wilson JE, Rich SS, Rothschild H, Elston RC . Lung cancer detection and prevention: evidence for an interaction between smoking and genetic predisposition. Cancer Res 1992; 52 (Suppl): 2694s–2697ss.

    CAS  PubMed  Google Scholar 

  40. Tokuhata GK, Lilienfeld AM . Familial aggregation of lung cancer in humans. J Natl Cancer Inst 1963; 30: 289–312.

    CAS  PubMed  Google Scholar 

  41. Tessema M, Willink R, Do K, Yu YY, Yu W, Machida EO et al. Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23–25. Cancer Res 2008; 68: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  42. Bell DW, Erban J, Sgroi DC, Haber DA . Selective loss of heterozygosity in multiple breast cancers from a carrier of mutations in both BRCA1 and BRCA2. Cancer Res 2002; 62: 2741–2743.

    CAS  PubMed  Google Scholar 

  43. Bijron JG, van der Groep P, van Dorst EB, Seeber LM, Sie-Go DM, Verheijen RH et al. Promoter hypermethylation patterns in Fallopian tube epithelium of BRCA1 and BRCA2 germline mutation carriers. Endocr Relat Cancer 2011; 19: 69–81.

    Article  Google Scholar 

  44. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE . Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res 2006; 8: R38.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R et al. Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 2009; 1: 177–200.

    Article  CAS  PubMed  Google Scholar 

  46. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

  47. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C et al. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 2009; 37: D885–D890.

    Article  CAS  PubMed  Google Scholar 

  48. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  49. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu P, Vikis HG, Wang D, Lu Y, Wang Y, Schwartz AG et al. Familial aggregation of common sequence variants on 15q24–25.1 in lung cancer. J Natl Cancer Inst 2008; 100: 1326–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thu KL, Pikor LA, Chari R, Wilson IM, Macaulay CE, English JC et al. Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. J Thorac Oncol 2011. 1521–1529.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Coe BP, Chari R, MacAulay C, Lam WL . FACADE: a fast and sensitive algorithm for the segmentation and calling of high resolution array CGH data. Nucleic Acids Res 2010; 38: e157.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lockwood WW, Wilson IM, Coe BP, Chari R, Pikor LA, Thu KL et al. Divergent genomic and epigenomic landscapes of lung cancer subtypes underscore the selection of different oncogenic pathways during tumor development. PLoS One 2012; 7: e37775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olive PL, Banath JP . Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 2004; 58: 331–335.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Miwa Suzuki, Denise McDougal, Chad Malloff and Bradley Coe for assistance. Grant supports were from Canadian Institutes of Health Research (CIHR MOP86731, MOP77903, MOP94867), Canadian Cancer Society (CCS017076, CCS20485); Terry Fox Foundation (20395); NCI Early Detection Research Network (5U01 CA84971-10), Canary Foundation, NIH Genetic Epidemiology of Lung Cancer Consortium (U01CA76293); and scholarships from CIHR (IMW, EAV, KSSE and WWL) and Vanier Canada (RC, KLT and NR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I M Wilson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, I., Vucic, E., Enfield, K. et al. EYA4 is inactivated biallelically at a high frequency in sporadic lung cancer and is associated with familial lung cancer risk. Oncogene 33, 4464–4473 (2014). https://doi.org/10.1038/onc.2013.396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.396

Keywords

This article is cited by

Search

Quick links