Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

Abstract

The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wennerberg K, Rossman KL, Der CJ . The Ras superfamily at a glance. J cell Sci 2005; 118: 843–846.

    CAS  PubMed  Google Scholar 

  2. Jaffe AB, Hall A . Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21: 247–269.

    CAS  PubMed  Google Scholar 

  3. Hall A . Rho family GTPases. Biochem Soc Trans 2012; 40: 1378–1382.

    CAS  PubMed  Google Scholar 

  4. Vigil D, Cherfils J, Rossman KL, Der CJ . Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010; 10: 842–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rossman KL, Der CJ, Sondek J . GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6: 167–180.

    CAS  PubMed  Google Scholar 

  6. Garcia-Mata R, Boulter E, Burridge K . The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 2011; 12: 493–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bustelo XR, Sauzeau V, Berenjeno IM . GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 2007; 29: 356–370.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bishop AL, Hall A . Rho GTPases and their effector proteins. Biochem J 2000; 348 (Part 2): 241–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aspenstrom P . Effectors for the Rho GTPases. Curr Opin Cell Biol 1999; 11: 95–102.

    CAS  PubMed  Google Scholar 

  10. Cox AD, Der CJ . Ras history: the saga continues. Small GTPases 2010; 1: 2–27.

    PubMed  PubMed Central  Google Scholar 

  11. Eva A, Aaronson SA . Isolation of a new human oncogene from a diffuse B-cell lymphoma. Nature 1985; 316: 273–275.

    CAS  PubMed  Google Scholar 

  12. Fasano O, Birnbaum D, Edlund L, Fogh J, Wigler M . New human transforming genes detected by a tumorigenicity assay. Mol Cell Biol 1984; 4: 1695–1705.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Noguchi T, Galland F, Batoz M, Mattei MG, Birnbaum D . Activation of a mcf.2 oncogene by deletion of amino-terminal coding sequences. Oncogene 1988; 3: 709–715.

    CAS  PubMed  Google Scholar 

  14. Hart MJ, Eva A, Evans T, Aaronson SA, Cerione RA . Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 1991; 354: 311–314.

    CAS  PubMed  Google Scholar 

  15. Terawaki S, Kitano K, Mori T, Zhai Y, Higuchi Y, Itoh N et al. The PHCCEx domain of Tiam1/2 is a novel protein- and membrane-binding module. EMBO J 2010; 29: 236–250.

    CAS  PubMed  Google Scholar 

  16. Stam JC, Sander EE, Michiels F, van Leeuwen FN, Kain HE, van der Kammen RA et al. Targeting of Tiam1 to the plasma membrane requires the cooperative function of the N-terminal pleckstrin homology domain and an adjacent protein interaction domain. J Biol Chem 1997; 272: 28447–28454.

    CAS  PubMed  Google Scholar 

  17. Bourguignon LY, Zhu H, Shao L, Chen YW . CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 2000; 275: 1829–1838.

    CAS  PubMed  Google Scholar 

  18. Tanaka M, Ohashi R, Nakamura R, Shinmura K, Kamo T, Sakai R et al. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. EMBO J 2004; 23: 1075–1088.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME . The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 2007; 104: 7265–7270.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchsbaum RJ, Connolly BA, Feig LA . Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 2002; 22: 4073–4085.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Buchsbaum RJ, Connolly BA, Feig LA . Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. J Biol Chem 2003; 278: 18833–18841.

    CAS  PubMed  Google Scholar 

  22. Yang J, Zhang Z, Roe SM, Marshall CJ, Barford D . Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor. Science 2009; 325: 1398–1402.

    CAS  PubMed  Google Scholar 

  23. Cote JF, Vuori K . Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 2002; 115: 4901–4913.

    CAS  PubMed  Google Scholar 

  24. Meller N, Merlot S, Guda C . CZH proteins: a new family of Rho-GEFs. J Cell Sci 2005; 118: 4937–4946.

    CAS  PubMed  Google Scholar 

  25. Pakes NK, Veltman DM, Williams RS . Zizimin and Dock guanine nucleotide exchange factors in cell function and disease. Small GTPases 2013; 4: 22–27.

    PubMed  PubMed Central  Google Scholar 

  26. Yang Z, Watson JC . Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from the garden pea. Proc Natl Acad Sci USA 1993; 90: 8732–8736.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu G, Li H, Yang Z . Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation. Plant Physiol 2000; 124: 1625–1636.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Berken A, Thomas C, Wittinghofer A . A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 2005; 436: 1176–1180.

    CAS  PubMed  Google Scholar 

  29. Nagawa S, Xu T, Yang Z . RHO GTPase in plants: conservation and invention of regulators and effectors. Small GTPases 2010; 1: 78–88.

    PubMed  PubMed Central  Google Scholar 

  30. Bulgin R, Raymond B, Garnett JA, Frankel G, Crepin VF, Berger CN et al. Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infect Immun 2010; 78: 1417–1425.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Orchard RC, Alto NM . Mimicking GEFs: a common theme for bacterial pathogens. Cell Microbiol 2012; 14: 10–18.

    CAS  PubMed  Google Scholar 

  32. Vega FM, Ridley AJ . SnapShot: Rho family GTPases. Cell 2007; 129: 1430.

    PubMed  Google Scholar 

  33. Wang DZ, Hammond VE, Abud HE, Bertoncello I, McAvoy JW, Bowtell DD . Mutation in Sos1 dominantly enhances a weak allele of the EGFR, demonstrating a requirement for Sos1 in EGFR signaling and development. Genes Dev 1997; 11: 309–320.

    CAS  PubMed  Google Scholar 

  34. O’Brien SP, Seipel K, Medley QG, Bronson R, Segal R, Streuli M . Skeletal muscle deformity and neuronal disorder in Trio exchange factor-deficient mouse embryos. Proc Natl Acad Sci USA 2000; 97: 12074–12078.

    PubMed  PubMed Central  Google Scholar 

  35. Mayers CM, Wadell J, McLean K, Venere M, Malik M, Shibata T et al. The Rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. J Biol Chem 2010; 285: 12344–12354.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cook DR, Solski PA, Bultman SJ, Kauselmann G, Schoor M, Kuehn R et al. The ect2 rho guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration. Genes Cancer 2011; 2: 932–942.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Spindler MJ, Burmeister BT, Huang Y, Hsiao EC, Salomonis N, Scott MJ et al. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to beta-adrenergic-induced cardiac hypertrophy. PLoS One 2013; 8: e62705.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Saito S, Tatsumoto T, Lorenzi MV, Chedid M, Kapoor V, Sakata H et al. Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. J Cell Biochem 2003; 90: 819–836.

    CAS  PubMed  Google Scholar 

  39. Miki T, Smith CL, Long JE, Eva A, Fleming TP . Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature 1993; 362: 462–465.

    CAS  PubMed  Google Scholar 

  40. Tatsumoto T, Xie X, Blumenthal R, Okamoto I, Miki T . Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol 1999; 147: 921–928.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim JE, Billadeau DD, Chen J . The tandem BRCT domains of Ect2 are required for both negative and positive regulation of Ect2 in cytokinesis. J Biol Chem 2004; 280: 5733–5739.

    PubMed  Google Scholar 

  42. Wolfe BA, Takaki T, Petronczki M, Glotzer M . Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 2009; 7: e1000110.

    PubMed  PubMed Central  Google Scholar 

  43. Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR et al. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol 2009; 7: e1000111.

    PubMed  PubMed Central  Google Scholar 

  44. Saito S, Liu XF, Kamijo K, Raziuddin R, Tatsumoto T, Okamoto I et al. Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. J Biol Chem 2004; 279: 7169–7179.

    CAS  PubMed  Google Scholar 

  45. Solski PA, Wilder RS, Rossman KL, Sondek J, Cox AD, Campbell SL et al. Requirement for C-terminal sequences in regulation of Ect2 guanine nucleotide exchange specificity and transformation. J Biol Chem 2004; 279: 25226–25233.

    CAS  PubMed  Google Scholar 

  46. Liot C, Seguin L, Siret A, Crouin C, Schmidt S, Bertoglio J . APC(cdh1) mediates degradation of the oncogenic Rho-GEF Ect2 after mitosis. PLoS One 2011; 6: e23676.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leung CC, Glover JN . BRCT domains: easy as one, two, three. Cell Cycle 2011; 10: 2461–2470.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerloff DL, Woods NT, Farago AA, Monteiro AN . BRCT domains: a little more than kin, and less than kind. FEBS Lett 2012; 586: 2711–2716.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kimura K, Tsuji T, Takada Y, Miki T, Narumiya S . Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J Biol Chem 2000; 275: 17233–17236.

    CAS  PubMed  Google Scholar 

  50. Van de Putte T, Zwijsen A, Lonnoy O, Rybin V, Cozijnsen M, Francis A et al. Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mech Dev 2001; 102: 33–44.

    CAS  PubMed  Google Scholar 

  51. Habets GG, Scholtes EH, Zuydgeest D, van der Kammen RA, Stam JC, Berns A et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP–GTP exchangers for Rho-like proteins. Cell 1994; 77: 537–549.

    CAS  PubMed  Google Scholar 

  52. Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J et al. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 2002; 4: 621–625.

    CAS  PubMed  Google Scholar 

  53. Sugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, Otani H et al. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 1998; 17: 3427–3433.

    CAS  PubMed  Google Scholar 

  54. Malliri A, van der Kammen RA, Clark K, van der Valk M, Michiels F, Collard JG . Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 2002; 417: 867–871.

    CAS  PubMed  Google Scholar 

  55. Hoshino M, Sone M, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y et al. Identification of the stef gene that encodes a novel guanine nucleotide exchange factor specific for Rac1. J Biol Chem 1999; 274: 17837–17844.

    CAS  PubMed  Google Scholar 

  56. Chiu CY, Leng S, Martin KA, Kim E, Gorman S, Duhl DM . Cloning and characterization of T-cell lymphoma invasion and metastasis 2 (TIAM2), a novel guanine nucleotide exchange factor related to TIAM1. Genomics 1999; 61: 66–73.

    CAS  PubMed  Google Scholar 

  57. Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument-Bromage H et al. P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac. Cell 2002; 108: 809–821.

    CAS  PubMed  Google Scholar 

  58. Donald S, Hill K, Lecureuil C, Barnouin R, Krugmann S, John Coadwell W et al. P-Rex2, a new guanine-nucleotide exchange factor for Rac. FEBS Lett 2004; 572: 172–176.

    CAS  PubMed  Google Scholar 

  59. Rosenfeldt H, Vazquez-Prado J, Gutkind JS . P-REX2, a novel PI-3-kinase sensitive Rac exchange factor. FEBS Lett 2004; 572: 167–171.

    CAS  PubMed  Google Scholar 

  60. Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM et al. P-Rex1 regulates neutrophil function. Curr Biol 2005; 15: 1867–1873.

    CAS  PubMed  Google Scholar 

  61. Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL et al. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2011; 2: 555.

    PubMed  Google Scholar 

  62. Donald S, Humby T, Fyfe I, Segonds-Pichon A, Walker SA, Andrews SR et al. P-Rex2 regulates Purkinje cell dendrite morphology and motor coordination. Proc Natl Acad Sci USA 2008; 105: 4483–4488.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Katzav S, Martin-Zanca D, Barbacid M . Vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 1989; 8: 2283–2290.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bustelo XR, Ledbetter JA, Barbacid M . Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 1992; 356: 68–71.

    CAS  PubMed  Google Scholar 

  65. Henske EP, Short MP, Jozwiak S, Bovey CM, Ramlakhan S, Haines JL et al. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1. Ann Hum Genet 1995; 59: 25–37.

    CAS  PubMed  Google Scholar 

  66. Schuebel KE, Bustelo XR, Nielsen DA, Song BJ, Barbacid M, Goldman D et al. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene 1996; 13: 363–371.

    CAS  PubMed  Google Scholar 

  67. Movilla NN, Bustelo XRX . Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 1999; 19: 7870–7885.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Trenkle T, McClelland M, Adlkofer K, Welsh J . Major transcript variants of VAV3, a new member of the VAV family of guanine nucleotide exchange factors. Gene 2000; 245: 139–149.

    CAS  PubMed  Google Scholar 

  69. Bustelo XR . Vav proteins, adaptors and cell signaling. Oncogene 2001; 20: 6372–6381.

    CAS  PubMed  Google Scholar 

  70. Aghazadeh B, Lowry WE, Huang XY, Rosen MK . Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 2000; 102: 625–633.

    CAS  PubMed  Google Scholar 

  71. Yu B, Martins IR, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME et al. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Cell 2010; 140: 246–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bustelo XR . Regulatory and signaling properties of the Vav family. Mol Cell Biol 2000; 20: 1461–1477.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Turner M, Billadeau DD . VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2002; 2: 476–486.

    CAS  PubMed  Google Scholar 

  74. Tedford K, Nitschke L, Girkontaite I, Charlesworth A, Chan G, Sakk V et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat Immunol 2001; 2: 548–555.

    CAS  PubMed  Google Scholar 

  75. Doody GM, Bell SE, Vigorito E, Clayton E, McAdam S, Tooze R et al. Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nat Immunol 2001; 2: 542–547.

    CAS  PubMed  Google Scholar 

  76. Fujikawa K, Miletic AV, Alt FW, Faccio R, Brown T, Hoog J et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J Exp Med 2003; 198: 1595–1608.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Karnoub AE, Weinberg RA . Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9: 517–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44: 1006–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sahai E, Marshall CJ . RHO–GTPase and cancer. Nat Rev Cancer 2002; 2: 133–142.

    PubMed  Google Scholar 

  81. Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E . Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 1999; 18: 6835–6839.

    CAS  PubMed  Google Scholar 

  82. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000; 19: 3013–3020.

    CAS  PubMed  Google Scholar 

  83. Eva A, Vecchio G, Diamond M, Tronick SR, Ron D, Cooper GM et al. Independently activated dbl oncogenes exhibit similar yet distinct structural alterations. Oncogene 1987; 1: 355–360.

    CAS  PubMed  Google Scholar 

  84. Lazer G, Katzav S . Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2011; 23: 969–979.

    CAS  PubMed  Google Scholar 

  85. Barrio-Real L, Kazanietz MG . Rho GEFs and cancer: linking gene expression and metastatic dissemination. Sci Signal 2012; 5: pe43.

    PubMed  Google Scholar 

  86. Roversi G, Pfundt R, Moroni RF, Magnani I, van Reijmersdal S, Pollo B et al. Identification of novel genomic markers related to progression to glioblastoma through genomic profiling of 25 primary glioma cell lines. Oncogene 2006; 25: 1571–1583.

    CAS  PubMed  Google Scholar 

  87. Sano M, Genkai N, Yajima N, Tsuchiya N, Homma J, Tanaka R et al. Expression level of ECT2 proto-oncogene correlates with prognosis in glioma patients. Oncol Rep 2006; 16: 1093–1098.

    CAS  PubMed  Google Scholar 

  88. Salhia B, Tran NL, Chan A, Wolf A, Nakada M, Rutka F et al. The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. Am J Pathol 2008; 173: 1828–1838.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Justilien V, Fields AP . Ect2 links the PKCiota–Par6alpha complex to Rac1 activation and cellular transformation. Oncogene 2009; 28: 3597–3607.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hirata D, Yamabuki T, Miki D, Ito T, Tsuchiya E, Fujita M et al. Involvement of epithelial cell transforming sequence-2 oncoantigen in lung and esophageal cancer progression. Clin Cancer Res 2009; 15: 256–266.

    CAS  PubMed  Google Scholar 

  91. Zhang ML, Lu S, Zhou L, Zheng SS . Correlation between ECT2 gene expression and methylation change of ECT2 promoter region in pancreatic cancer. Hepatobil Pancreat Dis Int 2008; 7: 533–538.

    CAS  Google Scholar 

  92. Iyoda M, Kasamatsu A, Ishigami T, Nakashima D, Endo-Sakamoto Y, Ogawara K et al. Epithelial cell transforming sequence 2 in human oral cancer. PLoS One 2010; 5: e14082.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jung Y, Lee S, Choi HS, Kim SN, Lee E, Shin Y et al. Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clin Cancer Res 2011; 17: 700–709.

    CAS  PubMed  Google Scholar 

  94. Fields AP, Justilien V . The guanine nucleotide exchange factor (GEF) Ect2 is an oncogene in human cancer. Adv Enzyme Regul 2010; 50: 190–200.

    PubMed  Google Scholar 

  95. Weeks A, Okolowsky N, Golbourn B, Ivanchuk S, Smith C, Rutka JT . ECT2 and RASAL2 mediate mesenchymal–amoeboid transition in human astrocytoma cells. Am J Pathol 2012; 181: 662–674.

    CAS  PubMed  Google Scholar 

  96. Qin J, Xie Y, Wang B, Hoshino M, Wolff DW, Zhao J et al. Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis. Oncogene 2009; 28: 1853–1863.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA, Busillo JM et al. Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol Cell 2010; 40: 877–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Montero JC, Seoane S, Ocaña A, Pandiella A . P-Rex1 participates in Neuregulin-ErbB signal transduction and its expression correlates with patient outcome in breast cancer. Oncogene 2011; 30: 1059–1071.

    CAS  PubMed  Google Scholar 

  99. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012; 485: 502–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 2009; 325: 1261–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Uhlenbrock K, Eberth A, Herbrand U, Daryab N, Stege P, Meier F et al. The RacGEF Tiam1 inhibits migration and invasion of metastatic melanoma via a novel adhesive mechanism. J cell Sci 2004; 117: 4863–4871.

    CAS  PubMed  Google Scholar 

  102. Adam L . Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta-catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J Biol Chem 2001; 276: 28443–28450.

    CAS  PubMed  Google Scholar 

  103. Stebel A, Brachetti C, Kunkel M, Schmidt M, Fritz G . Progression of breast tumors is accompanied by a decrease in expression of the Rho guanine exchange factor Tiam1. Oncol Rep 2009; 21: 217–222.

    CAS  PubMed  Google Scholar 

  104. Minard ME, Ellis LM, Gallick GE . Tiam1 regulates cell adhesion, migration and apoptosis in colon tumor cells. Clin Exp Metastas 2006; 23: 301–313.

    CAS  Google Scholar 

  105. Jin H, Li T, Ding Y, Deng Y, Zhang W, Yang H et al. Methylation status of T-lymphoma invasion and metastasis 1 promoter and its overexpression in colorectal cancer. Hum Pathol 2011; 42: 541–551.

    CAS  PubMed  Google Scholar 

  106. Engers R, Mueller M, Walter A, Collard JG, Willers R, Gabbert HE . Prognostic relevance of Tiam1 protein expression in prostate carcinomas. Br J Cancer 2006; 95: 1081–1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Engers R . Rac affects invasion of human renal cell carcinomas by up-regulating tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 expression. J Biol Chem 2001; 276: 41889–41897.

    CAS  PubMed  Google Scholar 

  108. Heid I, Lubeseder-Martellato C, Sipos B, Mazur PK, Lesina M, Schmid RM et al. Early requirement of Rac1 in a mouse model of pancreatic cancer. Gastroenterology 2011; 141: 719–730.

    CAS  PubMed  Google Scholar 

  109. Malliri A, Rygiel TP, van der Kammen RA, Song JY, Engers R, Hurlstone AF et al. The rac activator Tiam1 is a Wnt-responsive gene that modifies intestinal tumor development. J Biol Chem 2006; 281: 543–548.

    CAS  PubMed  Google Scholar 

  110. Strumane K, Rygiel T, van der Valk M, Collard JG . Tiam1-deficiency impairs mammary tumor formation in MMTV-c-neu but not in MMTV-c-myc mice. J Cancer Res Clin Oncol 2009; 135: 69–80.

    CAS  PubMed  Google Scholar 

  111. Liu L, Zhang Q, Zhang Y, Wang S, Ding Y . Lentivirus-mediated silencing of Tiam1 gene influences multiple functions of a human colorectal cancer cell line. Neoplasia 2006; 8: 917–924.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lane J, Martin TA, Mansel RE, Jiang WG . The expression and prognostic value of the guanine nucleotide exchange factors (GEFs) Trio, Vav1 and TIAM-1 in human breast cancer. Int Semin Surg Oncol 2008; 5: 23.

    PubMed  PubMed Central  Google Scholar 

  113. Chen JS, Su IJ, Leu YW, Young KC, Sun HS . Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer 2012; 130: 1302–1313.

    CAS  PubMed  Google Scholar 

  114. Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG . Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 1997; 278: 1464–1466.

    CAS  PubMed  Google Scholar 

  115. Schuebel KE, Movilla N, Rosa JL, Bustelo XR . Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 1998; 17: 6608–6621.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 2000; 275: 10141–10149.

    CAS  PubMed  Google Scholar 

  117. Hornstein I, Pikarsky E, Groysman M, Amir G, Peylan-Ramu N, Katzav S . The haematopoietic specific signal transducer Vav1 is expressed in a subset of human neuroblastomas. J Pathol 2003; 199: 526–533.

    CAS  PubMed  Google Scholar 

  118. Lazer G, Idelchuk Y, Schapira V, Pikarsky E, Katzav S . The haematopoietic specific signal transducer Vav1 is aberrantly expressed in lung cancer and plays a role in tumourigenesis. J Pathol 2009; 219: 25–34.

    CAS  PubMed  Google Scholar 

  119. Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R et al. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell 2005; 7: 39–49.

    CAS  PubMed  Google Scholar 

  120. Bartolome RA, Molina-Ortiz I, Samaniego R, Sanchez-Mateos P, Bustelo XR, Teixido J . Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion. Cancer Res 2006; 66: 248–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Prieto-Sanchez RM, Hernandez JA, Garcia JL, Gutierrez NC, San Miguel J, Bustelo XR et al. Overexpression of the VAV proto-oncogene product is associated with B-cell chronic lymphocytic leukaemia displaying loss on 13q. Br J Haematol 2006; 133: 642–645.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Citterio C, Menacho-Marquez M, Garcia-Escudero R, Larive RM, Barreiro O, Sanchez-Madrid F et al. The Rho exchange factors Vav2 and Vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal 2012; 5: ra71.

    PubMed  Google Scholar 

  123. Dong Z, Liu Y, Lu S, Wang A, Lee KS, Ridley A . Vav3 oncogene is overexpressed and regulates cell growth and androgen receptor activity in human prostate cancer. Mol Endocrinol 2006; 10: 2315–2325.

    Google Scholar 

  124. Lyons LS, Burnstein KL . Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity. Mol Endocrinol 2006; 20: 1061–1072.

    CAS  PubMed  Google Scholar 

  125. Lyons LS, Rao S, Balkan W, Faysal J, Maiorino CA, Burnstein KL . Ligand-independent activation of androgen receptors by Rho GTPase signaling in prostate cancer. Mol Endocrinol 2008; 22: 597–608.

    CAS  PubMed  Google Scholar 

  126. Rao S, Lyons LS, Fahrenholtz CD, Wu F, Farooq A, Balkan W et al. A novel nuclear role for the Vav3 nucleotide exchange factor in androgen receptor coactivation in prostate cancer. Oncogene 2012; 31: 716–727.

    CAS  PubMed  Google Scholar 

  127. Liu Y, Mo JQ, Hu Q, Boivin G, Levin L, Lu S et al. Targeted overexpression of vav3 oncogene in prostatic epithelium induces nonbacterial prostatitis and prostate cancer. Cancer Res 2008; 68: 6396–6406.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lin KY, Wang LH, Hseu YC, Fang CL, Yang HL, Kumar KJ et al. Clinical significance of increased guanine nucleotide exchange factor Vav3 expression in human gastric cancer. Mol Cancer Res 2012; 10: 750–759.

    CAS  PubMed  Google Scholar 

  129. Nomura T, Yamasaki M, Hirai K, Inoue T, Sato R, Matsuura K et al. Targeting the Vav3 oncogene enhances docetaxel-induced apoptosis through the inhibition of androgen receptor phosphorylation in LNCaP prostate cancer cells under chronic hypoxia. Mol Cancer 2013; 12: 12–27.

    Google Scholar 

  130. Pasteris NG, Cadle A, Logie LJ, Porteous ME, Schwartz CE, Stevenson RE et al. Isolation and characterization of the faciogenital dysplasia (Aarskog–Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell 1994; 79: 669–678.

    CAS  PubMed  Google Scholar 

  131. Genot E, Daubon T, Sorrentino V, Buccione R . FGD1 as a central regulator of extracellular matrix remodelling—lessons from faciogenital dysplasia. J Cell Sci 2012; 125: 3265–3270.

    CAS  PubMed  Google Scholar 

  132. Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I et al. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot–Marie–Tooth type 4H. Am J Hum Genet 2007; 81: 1–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A et al. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 2007; 81: 158–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A et al. Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 2007; 67: 3545–3550.

    CAS  PubMed  Google Scholar 

  135. Perry NA, Ackermann MA, Shriver M, Hu LY, Kontrogianni-Konstantopoulos A . Obscurins: unassuming giants enter the spotlight. IUBMB Life 2013; 65: 479–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    PubMed  Google Scholar 

  137. Otomo A, Hadano S, Okada T, Mizumura H, Kunita R, Nishijima H et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum Mol Genet 2003; 12: 1671–1687.

    CAS  PubMed  Google Scholar 

  138. Topp JD, Gray NW, Gerard RD, Horazdovsky BF . Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J Biol Chem 2004; 279: 24612–24623.

    CAS  PubMed  Google Scholar 

  139. Kanekura K, Hashimoto Y, Kita Y, Sasabe J, Aiso S, Nishimoto I et al. A Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J Biol Chem 2005; 280: 4532–4543.

    CAS  PubMed  Google Scholar 

  140. Devon RS, Helm JR, Rouleau GA, Leitner Y, Lerman-Sagie T, Lev D et al. The first nonsense mutation in alsin results in a homogeneous phenotype of infantile-onset ascending spastic paralysis with bulbar involvement in two siblings. Clin Genet 2003; 64: 210–215.

    CAS  PubMed  Google Scholar 

  141. Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, di Capua M, Bertini E et al. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet 2002; 71: 518–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Gray BN, Anderson JE, Burton MA, van Hazel G, Codde J, Morgan C et al. Regression of liver metastases following treatment with yttrium-90 microspheres. Aust N Z J Surg 1992; 62: 105–110.

    CAS  PubMed  Google Scholar 

  143. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001; 29: 160–165.

    CAS  PubMed  Google Scholar 

  144. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 2007; 39: 70–74.

    CAS  PubMed  Google Scholar 

  145. Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2007; 39: 75–79.

    CAS  PubMed  Google Scholar 

  146. Aoki Y, Matsubara Y . Ras/MAPK syndromes and childhood hemato-oncological diseases. Int J Hematol 2013; 97: 30–36.

    CAS  PubMed  Google Scholar 

  147. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 2001; 29: 166–173.

    CAS  PubMed  Google Scholar 

  148. Harvey K, Duguid IC, Alldred MJ, Beatty SE, Ward H, Keep NH et al. The GDP–GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 2004; 24: 5816–5826.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Marco EJ, Abidi FE, Bristow J, Dean WB, Cotter P, Jeremy RJ et al. ARHGEF9 disruption in a female patient is associated with X linked mental retardation and sensory hyperarousal. J Med Genet 2008; 45: 100–105.

    CAS  PubMed  Google Scholar 

  150. Kalscheuer VM, Musante L, Fang C, Hoffmann K, Fuchs C, Carta E et al. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat 2009; 30: 61–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lesca G, Till M, Labalme A, Vallee D, Hugonenq C, Philip N et al. De novo Xq11.11 microdeletion including ARHGEF9 in a boy with mental retardation, epilepsy, macrosomia, and dysmorphic features. Am J Med Genet A 2011; 155A: 1706–1711.

    PubMed  Google Scholar 

  152. Shimojima K, Sugawara M, Shichiji M, Mukaida S, Takayama R, Imai K et al. Loss-of-function mutation of collybistin is responsible for X-linked mental retardation associated with epilepsy. J Hum Genet 2011; 56: 561–565.

    CAS  PubMed  Google Scholar 

  153. Miller MB, Yan Y, Eipper BA, Mains RE . Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19: 255–273.

    PubMed  PubMed Central  Google Scholar 

  154. Mandela P, Ma XM . Kalirin, a key player in synapse formation, is implicated in human diseases. Neural Plast 2012; 2012: 728161.

    PubMed  PubMed Central  Google Scholar 

  155. Galan JE . Common themes in the design and function of bacterial effectors. Cell Host Microbe 2009; 5: 571–579.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE . S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 1998; 93: 815–826.

    CAS  PubMed  Google Scholar 

  157. Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 2006; 124: 133–145.

    CAS  PubMed  Google Scholar 

  158. Buchwald G, Friebel A, Galan JE, Hardt WD, Wittinghofer A, Scheffzek K . Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J 2002; 21: 3286–3295.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Dong N, Liu L, Shao F . A bacterial effector targets host DH–PH domain RhoGEFs and antagonizes macrophage phagocytosis. EMBO J 2010; 29: 1363–1376.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Mossessova E, Corpina RA, Goldberg J . Crystal structure of ARF1*Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism. Mol Cell 2003; 12: 1403–1411.

    CAS  PubMed  Google Scholar 

  161. Robineau S, Chabre M, Antonny B . Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. Proc Natl Acad Sci USA 2000; 97: 9913–9918.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL . Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 1999; 3: 275–285.

    CAS  PubMed  Google Scholar 

  163. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Shang X, Marchioni F, Sipes N, Evelyn CR, Jerabek-Willemsen M, Duhr S et al. Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chem Biol 2012; 19: 699–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shang X, Marchioni F, Evelyn CR, Sipes N, Zhou X, Seibel W et al. Small-molecule inhibitors targeting G-protein-coupled Rho guanine nucleotide exchange factors. Proc Natl Acad Sci USA 2013; 110: 3155–3160.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 2012; 109: 5299–5304.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 2012; 51: 6140–6143.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hocker HJ, Cho KJ, Chen CY, Rambahal N, Sagineedu SR, Shaari K et al. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc Natl Acad Sci USA 2013; 110: 10201–10206.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Creedon H, Brunton VG . Src kinase inhibitors: promising cancer therapeutics? Crit Rev Oncogen 2012; 17: 145–159.

    Google Scholar 

  170. Mochly-Rosen D, Das K, Grimes KV . Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 2012; 11: 937–957.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rodon J, Dienstmann R, Serra V, Tabernero J . Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013; 10: 143–153.

    CAS  PubMed  Google Scholar 

  172. Coleman N, Kissil J . Recent advances in the development of p21-activated kinase inhibitors. Cell Logist 2012; 2: 132–135.

    PubMed  PubMed Central  Google Scholar 

  173. Rath N, Olson MF . Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012; 13: 900–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947–2948.

    CAS  PubMed  Google Scholar 

  175. Bustelo XR . Regulation of Vav proteins by intramolecular events. Front Biosci 2002; 7: d24–d30.

    CAS  PubMed  Google Scholar 

  176. Miki T, Fleming TP, Bottaro DP, Rubin JS, Ron D, Aaronson SA . Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 1991; 251: 72–75.

    CAS  PubMed  Google Scholar 

  177. Chan AM, McGovern ES, Catalano G, Fleming TP, Miki T . Expression cDNA cloning of a novel oncogene with sequence similarity to regulators of small GTP-binding proteins. Oncogene 1994; 9: 1057–1063.

    CAS  PubMed  Google Scholar 

  178. Chan AM, Takai S, Yamada K, Miki T . Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene 1996; 12: 1259–1266.

    CAS  PubMed  Google Scholar 

  179. Toksoz D, Williams DA . Novel human oncogene lbc detected by transfection with distinct homology regions to signal transduction products. Oncogene 1994; 9: 621–628.

    CAS  PubMed  Google Scholar 

  180. Whitehead I, Kirk H, Tognon C, Trigo-Gonzalez G, Kay R . Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J Biol Chem 1995; 270: 18388–18395.

    CAS  PubMed  Google Scholar 

  181. Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T . A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentially links Rho and Rac signaling pathways. EMBO J 1994; 13: 4776–4786.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Whitehead I, Kirk H, Kay R . Retroviral transduction and oncogenic selection of a cDNA encoding Dbs, a homolog of the Dbl guanine nucleotide exchange factor. Oncogene 1995; 10: 713–721.

    CAS  PubMed  Google Scholar 

  183. Whitehead IP, Khosravi-Far R, Kirk H, Trigo-Gonzalez G, Der CJ, Kay R . Expression cloning of lsc, a novel oncogene with structural similarities to the Dbl family of guanine nucleotide exchange factors. J Biol Chem 1996; 271: 18643–18650.

    CAS  PubMed  Google Scholar 

  184. Himmel KL, Bi F, Shen H, Jenkins NA, Copeland NG, Zheng Y et al. Activation of clg, a novel dbl family guanine nucleotide exchange factor gene, by proviral insertion at evi24, a common integration site in B cell and myeloid leukemias. J Biol Chem 2002; 277: 13463–13472.

    CAS  PubMed  Google Scholar 

  185. Kaartinen V, Gonzalez-Gomez I, Voncken JW, Haataja L, Faure E, Nagy A et al. Abnormal function of astroglia lacking Abr and Bcr RacGAPs. Development 2001; 128: 4217–4227.

    CAS  PubMed  Google Scholar 

  186. Kaartinen V, Nagy A, Gonzalez-Gomez I, Groffen J, Heisterkamp N . Vestibular dysgenesis in mice lacking Abr and Bcr Cdc42/RacGAPs. Dev Dyn 2002; 223: 517–525.

    CAS  PubMed  Google Scholar 

  187. Kino T, Souvatzoglou E, Charmandari E, Ichijo T, Driggers P, Mayers C et al. Rho family Guanine nucleotide exchange factor Brx couples extracellular signals to the glucocorticoid signaling system. J Biol Chem 2006; 281: 9118–9126.

    CAS  PubMed  Google Scholar 

  188. Cai H, Lin X, Xie C, Laird FM, Lai C, Wen H et al. Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress. J Neurosci 2005; 25: 7567–7574.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Hadano S, Benn SC, Kakuta S, Otomo A, Sudo K, Kunita R et al. Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Hum Mol Genet 2006; 15: 233–250.

    CAS  PubMed  Google Scholar 

  190. Devon RS, Orban PC, Gerrow K, Barbieri MA, Schwab C, Cao LP et al. Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc Natl Acad Sci USA 2006; 103: 9595–9600.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Yamanaka K, Miller TM, McAlonis-Downes M, Chun SJ, Cleveland DW . Progressive spinal axonal degeneration and slowness in ALS2-deficient mice. Ann Neurol 2006; 60: 95–104.

    CAS  PubMed  Google Scholar 

  192. Deng HX, Zhai H, Fu R, Shi Y, Gorrie GH, Yang Y et al. Distal axonopathy in an alsin-deficient mouse model. Hum Mol Genet 2007; 16: 2911–2920.

    CAS  PubMed  Google Scholar 

  193. Kawasaki Y, Jigami T, Furukawa S, Sagara M, Echizen K, Shibata Y et al. The adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis. J Biol Chem 2010; 285: 1199–1207.

    CAS  PubMed  Google Scholar 

  194. Kawasaki Y, Tsuji S, Muroya K, Furukawa S, Shibata Y, Okuno M et al. The adenomatous polyposis coli-associated exchange factors Asef and Asef2 are required for adenoma formation in Apc(Min/+)mice. EMBO Rep 2009; 10: 1355–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Voncken JW, van Schaick H, Kaartinen V, Deemer K, Coates T, Landing B et al. Increased neutrophil respiratory burst in bcr-null mutants. Cell 1995; 80: 719–728.

    CAS  PubMed  Google Scholar 

  196. Papadopoulos T, Korte M, Eulenburg V, Kubota H, Retiounskaia M, Harvey RJ et al. Impaired GABAergic transmission and altered hippocampal synaptic plasticity in collybistin-deficient mice. EMBO J 2007; 26: 3888–3899.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Hirsch E, Pozzato M, Vercelli A, Barberis L, Azzolino O, Russo C et al. Defective dendrite elongation but normal fertility in mice lacking the Rho-like GTPase activator Dbl. Mol Cell Biol 2002; 22: 3140–3148.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med 2008; 14: 64–68.

    CAS  PubMed  Google Scholar 

  199. Mikelis CM, Palmby TR, Simaan M, Li W, Szabo R, Lyons R et al. PDZ-RhoGEF and LARG are essential for embryonic development and provide a link between thrombin and LPA receptors and Rho activation. J Biol Chem 2013; 288: 12232–12243.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Girkontaite I, Missy K, Sakk V, Harenberg A, Tedford K, Potzel T et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nat Immunol 2001; 2: 855–862.

    CAS  PubMed  Google Scholar 

  201. Harenberg A, Girkontaite I, Giehl K, Fischer KD . The Lsc RhoGEF mediates signaling from thromboxane A2 to actin polymerization and apoptosis in thymocytes. Eur J Immunol 2005; 35: 1977–1986.

    CAS  PubMed  Google Scholar 

  202. Rubtsov A, Strauch P, Digiacomo A, Hu J, Pelanda R, Torres RM . Lsc regulates marginal-zone B cell migration and adhesion and is required for the IgM T-dependent antibody response. Immunity 2005; 23: 527–538.

    CAS  PubMed  Google Scholar 

  203. Francis SA, Shen X, Young JB, Kaul P, Lerner DJ . Rho GEF Lsc is required for normal polarization, migration, and adhesion of formyl-peptide-stimulated neutrophils. Blood 2006; 107: 1627–1635.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zizer E, Beilke S, Bauerle T, Schilling K, Mohnle U, Adler G et al. Loss of Lsc/p115 protein leads to neuronal hypoplasia in the esophagus and an achalasia-like phenotype in mice. Gastroenterology 2010; 139: 1344–1354.

    CAS  PubMed  Google Scholar 

  205. Ma XM, Kiraly DD, Gaier ED, Wang Y, Kim EJ, Levine ES et al. Kalirin-7 is required for synaptic structure and function. J Neurosci 2008; 28: 12368–12382.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Cahill ME, Xie Z, Day M, Photowala H, Barbolina MV, Miller CA et al. Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proc Natl Acad Sci USA 2009; 106: 13058–13063.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lange S, Ouyang K, Meyer G, Cui L, Cheng H, Lieber RL et al. Obscurin determines the architecture of the longitudinal sarcoplasmic reticulum. J Cell Sci 2009; 122: 2640–2650.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Missy K, Hu B, Schilling K, Harenberg A, Sakk V, Kuchenbecker K et al. AlphaPIX Rho GTPase guanine nucleotide exchange factor regulates lymphocyte functions and antigen receptor signaling. Mol Cell Biol 2008; 28: 3776–3789.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Ramakers GJ, Wolfer D, Rosenberger G, Kuchenbecker K, Kreienkamp HJ, Prange-Kiel J et al. Dysregulation of Rho GTPases in the alphaPix/Arhgef6 mouse model of X-linked intellectual disability is paralleled by impaired structural and synaptic plasticity and cognitive deficits. Hum Mol Genet 2012; 21: 268–286.

    CAS  PubMed  Google Scholar 

  210. Brambilla R, Gnesutta N, Minichiello L, White G, Roylance AJ, Herron CE et al. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature 1997; 390: 281–286.

    CAS  PubMed  Google Scholar 

  211. Itier JM, Tremp GL, Leonard JF, Multon MC, Ret G, Schweighoffer F et al. Imprinted gene in postnatal growth role. Nature 1998; 393: 125–126.

    CAS  PubMed  Google Scholar 

  212. Clapcott SJ, Peters J, Orban PC, Brambilla R, Graham CF . Two ENU-induced mutations in Rasgrf1 and early mouse growth retardation. Mamm Genome 2003; 14: 495–505.

    CAS  PubMed  Google Scholar 

  213. Giese KP, Friedman E, Telliez JB, Fedorov NB, Wines M, Feig LA et al. Hippocampus-dependent learning and memory is impaired in mice lacking the Ras-guanine-nucleotide releasing factor 1 (Ras-GRF1). Neuropharmacology 2001; 41: 791–800.

    CAS  PubMed  Google Scholar 

  214. Font de Mora J, Esteban LM, Burks DJ, Nunez A, Garces C, Garcia-Barrado MJ et al. Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO J 2003; 22: 3039–3049.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A et al. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 2005; 25: 11184–11190.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Fernandez-Medarde A, Esteban LM, Nunez A, Porteros A, Tessarollo L, Santos E . Targeted disruption of Ras-Grf2 shows its dispensability for mouse growth and development. Mol Cell Biol 2002; 22: 2498–2504.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Ruiz S, Santos E, Bustelo XR . RasGRF2, a guanosine nucleotide exchange factor for Ras GTPases, participates in T-cell signaling responses. Mol Cell Biol 2007; 27: 8127–8142.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K et al. The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J 2000; 19: 642–654.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Esteban LM, Fernandez-Medarde A, Lopez E, Yienger K, Guerrero C, Ward JM et al. Ras-guanine nucleotide exchange factor sos2 is dispensable for mouse growth and development. Mol Cell Biol 2000; 20: 6410–6413.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Yoo S, Kim Y, Lee H, Park S . A gene trap knockout of the Tiam-1 protein results in malformation of the early embryonic brain. Mol Cells 2012; 34: 103–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang Z, Kumamoto Y, Wang P, Gan X, Lehmann D, Smrcka AV et al. Regulation of immature dendritic cell migration by RhoA guanine nucleotide exchange factor Arhgef5. J Biol Chem 2009; 284: 28599–28606.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Peng YJ, He WQ, Tang J, Tao T, Chen C, Gao YQ et al. Trio is a key guanine nucleotide exchange factor coordinating regulation of the migration and morphogenesis of granule cells in the developing cerebellum. J Biol Chem 2010; 285: 24834–24844.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang R, Alt FW, Davidson L, Orkin SH, Swat W . Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 1995; 374: 470–473.

    CAS  PubMed  Google Scholar 

  224. Tarakhovsky A, Turner M, Schaal S, Mee PJ, Duddy LP, Rajewsky K et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 1995; 374: 467–470.

    CAS  PubMed  Google Scholar 

  225. Fischer KD, Zmuldzinas A, Gardner S, Barbacid M, Bernstein A, Guidos C . Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 1995; 374: 474–477.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Adrienne D Cox for careful and critical reading of our manuscript. We apologize to colleagues whose studies we did not cite due to space limitations. CJD is supported by grants from the NIH, AACR/Pancreatic Cancer Action Network and the Lustgarten Pancreatic Cancer Foundation. DRC was supported by a T32 training grant (CA71341) and an F31 predoctoral fellowship (CA159821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Der.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, D., Rossman, K. & Der, C. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 33, 4021–4035 (2014). https://doi.org/10.1038/onc.2013.362

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.362

Keywords

This article is cited by

Search

Quick links