Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional regulation of the apurinic/apyrimidinic endonuclease 1 by nucleophosmin: impact on tumor biology

An Erratum to this article was published on 25 June 2015

Abstract

Nucleophosmin 1 (NPM1) is a nucleolar protein involved in ribosome biogenesis, stress responses and maintaining genome stability. One-third of acute myeloid leukemias (AMLs) are associated with aberrant localization of NPM1 to the cytoplasm (NPM1c+). This mutation is critical during leukemogenesis and constitutes a good prognostic factor for chemotherapy. At present, there is no clear molecular basis for the role of NPM1 in DNA repair and the tumorigenic process. We found that the nuclear apurinic/apyrimidinic endonuclease 1 (APE1), a core enzyme in base excision DNA repair (BER) of DNA lesions, specifically interacts with NPM1 within nucleoli and the nucleoplasm. Cytoplasmic accumulation of APE1 is associated with cancers including, as we show, NPM1c+ AML. Here we show that NPM1 stimulates APE1 BER activity in cells. We provide evidence that expression of the NPM1c+ variant causes cytoplasmic accumulation of APE1 in: (i) a heterologous cell system (HeLa cells); (ii) the myeloid cell line OCI/AML3 stably expressing NPM1c+; and (iii) primary lymphoblasts of NPM1c+ AML patients. Consistent with impaired APE1 localization, OCI/AML3 cells and blasts of AML patients have impaired BER activity. Cytoplasmic APE1 in NPM1c+ myeloid cells is truncated due to proteolysis. Thus, the good prognostic response of NPM1c+ AML to chemotherapy may result from the cytoplasmic relocalization of APE1 and the consequent BER deficiency. NPM1 thus has an indirect but significant role in BER in vivo that may also be important for NPM1c+ tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukemia

APE1/Ref-1:

apurinic/apyrimidinic endonuclease 1/redox effector factor 1

BER:

base excision DNA repair

NPM1:

nucleophosmin 1.

References

  1. Colombo E, Alcalay M, Pelicci PG . Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30: 2595–2609.

    Article  CAS  Google Scholar 

  2. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG . Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 529–533.

    Article  CAS  Google Scholar 

  3. Lee C, Smith BA, Bandyopadhyay K, Gjerset RA . DNA damage disrupts the p14ARF-B23 (nucleophosmin) interaction and triggers a transient subnuclear redistribution of p14ARF. Cancer Res 2005; 65: 9834–9842.

    Article  CAS  Google Scholar 

  4. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    Article  Google Scholar 

  5. Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 2006; 107: 4514–4523.

    Article  CAS  Google Scholar 

  6. Pianta A, Fabbro D, Damiani D, Tiribelli M, Fanin R, Franzoni A et al. Two novel NPM1 mutations in a therapy-responder AML patient. Hematol Oncol 2010; 28: 151–155.

    CAS  Google Scholar 

  7. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011; 43: 470–475.

    Article  CAS  Google Scholar 

  8. den Besten W, Kuo ML, Williams RT, Sherr CJ . Myeloid leukemia-associated nucleophosmin mutants perturb p53-dependent and independent activities of the Arf tumor suppressor protein. Cell Cycle 2005; 4: 1593–1598.

    Article  CAS  Google Scholar 

  9. Colombo E, Martinelli P, Zamponi R, Shing DC, Bonetti P, Luzi L et al. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant. Cancer Res 2006; 66: 3044–3050.

    Article  CAS  Google Scholar 

  10. Bonetti P, Davoli T, Sironi C, Amati B, Pelicci PG, Colombo E . Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol 2008; 182: 19–26.

    Article  CAS  Google Scholar 

  11. Cilloni D, Messa F, Rosso V, Arruga F, Defilippi I, Carturan S et al. Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-kappaB in AML carrying NPM1 mutations. Leukemia 2008; 22: 1234–1240.

    Article  CAS  Google Scholar 

  12. Gurumurthy M, Tan CH, Ng R, Zeiger L, Lau J, Lee J et al. Nucleophosmin interacts with HEXIM1 and regulates RNA polymerase II transcription. J Mol Biol 2008; 378: 302–317.

    Article  CAS  Google Scholar 

  13. Wanzel M, Russ AC, Kleine-Kohlbrecher D, Colombo E, Pelicci PG, Eilers M . A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol 2008; 10: 1051–1061.

    Article  CAS  Google Scholar 

  14. Falini B, Nicoletti I, Martelli MF, Mecucci C . Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007; 109: 874–885.

    Article  CAS  Google Scholar 

  15. Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 2011; 117: 1109–1120.

    Article  CAS  Google Scholar 

  16. Londero AP, Orsaria M, Tell G, Marzinotto S, Capodicasa V, Poletto M et al. Expression and prognostic significance of APE1/Ref1 and NPM1 proteins in ovarian serous cancer; submitted.

  17. Vascotto C, Fantini D, Romanello M, Cesaratto L, Deganuto M, Leonardi A et al. APE1/Ref-1 interacts with NPM1 within nucleoli and plays a role in the rRNA quality control process. Mol Cell Biol 2009; 29: 1834–1854.

    Article  CAS  Google Scholar 

  18. Tell G, Fantini D, Quadrifoglio F . Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell Mol Life Sci 2010; 67: 3589–3608.

    Article  CAS  Google Scholar 

  19. Wilson DM 3rd, Simeonov A . Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 2010; 67: 3621–3631.

    Article  CAS  Google Scholar 

  20. Xanthoudakis S, Curran T . Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 1992; 11: 653–665.

    Article  CAS  Google Scholar 

  21. Xanthoudakis S, Miao GG, Curran T . The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc Natl Acad Sci USA 1994; 91: 23–27.

    Article  CAS  Google Scholar 

  22. Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T et al. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem 1999; 274: 35809–35815.

    Article  CAS  Google Scholar 

  23. Seemann S, Hainaut P . Roles of thioredoxin reductase 1 and APE/Ref-1 in the control of basal p53 stability and activity. Oncogene 2005; 24: 3853–3863.

    Article  CAS  Google Scholar 

  24. Hirota K, Matsui M, Iwata Z, Nishiyama A, Mori K, Yodoi J . AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 1997; 94: 3633–3638.

    Article  CAS  Google Scholar 

  25. Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A et al. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res 2000; 60: 6688–6695.

    CAS  Google Scholar 

  26. Ziel KA, Campbell CC, Wilson GL, Gillespie MN . Ref-1/Ape is critical for formation of the hypoxia-inducible transcriptional complex on the hypoxic response element of the rat pulmonary artery endothelial cell VEGF gene. FASEB J 2004; 18: 986–988.

    Article  CAS  Google Scholar 

  27. Gray MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 2005; 24: 3110–3120.

    Article  CAS  Google Scholar 

  28. Tell G, Damante G, Caldwell D, Kelley MR . The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 2005; 7: 367–384.

    Article  CAS  Google Scholar 

  29. Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S . Role of acetylated human AP-endonuclease (APE1/Ref-1). in regulation of the parathyroid hormone gene. EMBO J 2003; 22: 6299–6309.

    Article  CAS  Google Scholar 

  30. Fantini D, Vascotto C, Marasco D, D'Ambrosio C, Romanello M, Vitagliano L et al. Critical lysine residues within the overlooked N-terminal domain of human APE1 regulate its biological functions. Nucleic Acids Res 2010; 38: 8239–8256.

    Article  CAS  Google Scholar 

  31. Tell G, Wilson DM 3rd, Lee CH . Intrusion of a DNA repair protein in the RNome world: is this the beginning of a new era? Mol Cell Biol 2010; 30: 366–371.

    Article  CAS  Google Scholar 

  32. Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S et al. Identification of apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 2009; 37: 3946–3958.

    Article  CAS  Google Scholar 

  33. Poletto M, Vascotto C, Scognamiglio PL, Lirussi L, Marasco D, Tell G . Role of the unstructured N-terminal domain of the human apurinic/apyrimidinic endonuclease 1 (hAPE1) in the modulation of its interaction with nucleic acids and nucleophosmin (NPM1). Biochem J 2013; 452: 545–557.

    Article  CAS  Google Scholar 

  34. Mol CD, Izumi T, Mitra S, Tainer JA . DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination (corrected). Nature 2000; 403: 451–456.

    Article  CAS  Google Scholar 

  35. Masuda Y, Bennett RA, Demple B . Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product. J Biol Chem 1998; 273: 30352–30359.

    Article  CAS  Google Scholar 

  36. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC et al. Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 2005; 25: 8874–8886.

    Article  CAS  Google Scholar 

  37. Lirussi L, Antoniali G, Vascotto C, D'Ambrosio C, Poletto M, Romanello M et al. Nucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells. Mol Biol Cell 2012; 23: 4079–4096.

    Article  CAS  Google Scholar 

  38. Svilar D, Goellner EM, Almeida KH, Sobol RW . Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 2011; 14: 2491–2507.

    Article  CAS  Google Scholar 

  39. Kaina B, Ochs K, Grosch S, Fritz G, Lips J, Tomicic M et al. BER, MGMT, and MMR in defense against alkylation-induced genotoxicity and apoptosis. Prog Nucleic Acid Res Mol Biol 2001; 68: 41–54.

    Article  CAS  Google Scholar 

  40. Jiang Y, Guo C, Fishel ML, Wang ZY, Vasko MR, Kelley MR . Role of APE1 in differentiated neuroblastoma SH-SY5Y cells in response to oxidative stress: use of APE1 small molecule inhibitors to delineate APE1 functions. DNA Repair (Amst) 2009; 8: 1273–1282.

    Article  CAS  Google Scholar 

  41. Ballmair D, Epe B . DNA damage by bromate: mechanism and consequences. Toxicology 2006; 221: 166–171.

    Article  Google Scholar 

  42. Chen J, Stubbe J . Bleomycins: towards better therapeutics. Nat Rev Cancer 2005; 5: 102–112.

    Article  CAS  Google Scholar 

  43. Fung H, Demple B . Distinct roles of Ape1 protein in the repair of DNA damage induced by ionizing radiation or bleomycin. J Biol Chem 2011; 286: 4968–4977.

    Article  CAS  Google Scholar 

  44. Rai G, Vyjayanti VN, Dorjsuren D, Simeonov A, Jadhav A, Wilson DM 3rd et al. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J Med Chem 2012; 55: 3101–3112.

    Article  CAS  Google Scholar 

  45. Weibrecht I, Leuchowius KJ, Clausson CM, Conze T, Jarvius M, Howell WM et al. Proximity ligation assays: a recent addition to the proteomics toolbox. Expert Rev Proteomics 2010; 7: 401–409.

    Article  CAS  Google Scholar 

  46. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. GIMEMA Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266 Erratum in: N Engl J Med 2005; 352: 740.

    Article  CAS  Google Scholar 

  47. Quentmeier H, Martelli MP, Dirks WG, Bolli N, Liso A, Macleod RA et al. Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia 2005; 19: 1760–1767.

    Article  CAS  Google Scholar 

  48. Yoshida A, Urasaki Y, Waltham M, Bergman AC, Pourquier P, Rothwell DG et al. Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J Biol Chem 2003; 278: 37768–37776.

    Article  CAS  Google Scholar 

  49. Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A et al. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 2003; 4: 145–153.

    Article  CAS  Google Scholar 

  50. Guo Y, Chen J, Zhao T, Fan Z . Granzyme K degrades the redox/DNA repair enzyme Ape1 to trigger oxidative stress of target cells leading to cytotoxicity. Mol Immunol 2008; 45: 2225–2235.

    Article  CAS  Google Scholar 

  51. Vascotto C, Bisetto E, Li M, Zeef LA, D'Ambrosio C, Domenis R et al. Knock-in reconstitution studies reveal an unexpected role of Cys-65 in regulating APE1/Ref-1 subcellular trafficking and function. Mol Biol Cell 2011; 22: 3887–3901.

    Article  CAS  Google Scholar 

  52. Kelley MR, Luo M, Reed A, Su D, Delaplane S, Borch RF et al. Functional analysis of novel analogues of E3330 that block the redox signaling activity of the multifunctional AP endonuclease/redox signaling enzyme APE1/Ref-1. Antioxid Redox Signal 2011; 14: 1387–1401.

    Article  CAS  Google Scholar 

  53. Wang HF, Takenaka K, Nakanishi A, Miki Y . BRCA2 and nucleophosmin coregulate centrosome amplification and form a complex with the Rho effector kinase ROCK2. Cancer Res 2011; 71: 68–77.

    Article  CAS  Google Scholar 

  54. Fung H, Demple B . A vital role for APE1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol. Cell 2005; 17: 463–470.

    Article  CAS  Google Scholar 

  55. He T, Weintraub NL, Goswami PC, Chatterjee P, Flaherty DM, Domann FE et al. Redox factor-1 contributes to the regulation of progression from G0/G1 to S by PDGF in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2003; 285: H804–H812.

    Article  CAS  Google Scholar 

  56. Izumi T, Brown DB, Naidu CV, Bhakat KK, Macinnes MA, Saito H et al. Two essential but distinct functions of the mammalian abasic endonuclease. Proc Natl Acad Sci USA 2005; 102: 5739–5743.

    Article  CAS  Google Scholar 

  57. Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S . Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 2008; 283: 26349–26356.

    Article  CAS  Google Scholar 

  58. Szczesny B, Tann AW, Mitra S . Age- and tissue-specific changes in mitochondrial and nuclear DNA base excision repair activity in mice: Susceptibility of skeletal muscles to oxidative injury. Mech Ageing Dev 2010; 131: 330–337.

    Article  CAS  Google Scholar 

  59. Tell G, Crivellato E, Pines A, Paron I, Pucillo C, Manzini G et al. Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat Res 2001; 485: 143–152.

    Article  CAS  Google Scholar 

  60. Angkeow P, Deshpande SS, Qi B, Liu YX, Park YC, Jeon BH et al. Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ 2002; 9: 717–725.

    Article  CAS  Google Scholar 

  61. Ozaki M, Suzuki S, Irani K . Redox factor-1/APE suppresses oxidative stress by inhibiting the rac1 GTPase. FASEB J 2002; 16: 889–890.

    Article  CAS  Google Scholar 

  62. Yu ET, Hadi MZ . Bioinformatic processing to identify single nucleotide polymorphism that potentially affect Ape1 function. Mutat Res 2011; 722: 140–146.

    Article  CAS  Google Scholar 

  63. Pitiot AS, Santamaría I, García-Suárez O, Centeno I, Astudillo A, Rayón C et al. A new type of NPM1 gene mutation in AML leading to a C-terminal truncated protein. Leukemia 2007; 21: 1564–1566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly thank the National Center for Advancing Translational Sciences (NCATS) and Dr David M Wilson III for providing the APE1 specific inhibitor (compound 3). We also thank Dr Malgorzata M Kamocka from the Indiana University School of Medicine, Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, Indianapolis, IN, USA. for her helpful suggestions during IF analyses, Dr Laura Cesaratto for cell-viability assays and Sofia Tell for kind support. This work was supported by grants from: AIRC (IG10269) and MIUR (FIRB_RBRN07BMCT and PRIN2008_CCPKRP_003) to GT. This work has been also supported by a UICC Yamagiwa-Yoshida Memorial International Cancer Study Grant to GT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Tell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vascotto, C., Lirussi, L., Poletto, M. et al. Functional regulation of the apurinic/apyrimidinic endonuclease 1 by nucleophosmin: impact on tumor biology. Oncogene 33, 2876–2887 (2014). https://doi.org/10.1038/onc.2013.251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.251

Keywords

This article is cited by

Search

Quick links