Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel Ku70 function in colorectal homeostasis separate from nonhomologous end joining

Abstract

Ku70, a known nonhomologous end-joining (NHEJ) factor, also functions in tumor suppression, although this molecular mechanism remains uncharacterized. Previously, we showed that mice deficient for DNA ligase IV (Lig4), another key NHEJ factor, succumbed to aggressive lymphoma in the absence of tumor suppressor p53. However, the tumor phenotype is abrogated by the introduction of a hypomorphic mutant p53R172P, which impaired p53-mediated apoptosis but not cell-cycle arrest. However, Lig4−/−p53R172P mice succumbed to severe diabetes. To further elucidate the role of NHEJ and p53-mediated apoptosis in vivo, we bred Ku70−/− p53R172P mice. Unexpectedly, these mice were free of diabetes, although 80% of the mutant mice had abnormally enlarged colons with pronounced inflammation. Remarkably, most of these mutant mice progressed to dysplasia, adenoma and adenocarcinoma; this is in contrast to the Lig4−/−p53R172P phenotype, strongly suggesting an NHEJ-independent function of Ku70. Significantly, our analyses of Ku70−/−p53R172P colonic epithelial cells show nuclear stabilization of β-catenin accompanied by higher expression of cyclin D1 and c-Myc in affected colon sections than in control samples. This is not due to the p53 mutation, as Ku70−/− mice share this phenotype. Our results not only unravel a novel function of Ku70 essential for colon homeostasis, but also establish an excellent in vivo model in which to study how chronic inflammation and abnormal cellular proliferation underlie tumorigenesis and tumor progression in the colon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E . Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.

    Article  PubMed  Google Scholar 

  2. Lao VV, Grady WM . Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 2011; 8: 686–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saif MW, Chu E . Biology of colorectal cancer. Cancer J 2010; 16: 196–201.

    Article  CAS  PubMed  Google Scholar 

  4. Fearnhead NS, Wilding JL, Bodmer WF . Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull 2002; 64: 27–43.

    Article  CAS  PubMed  Google Scholar 

  5. Terzic J, Grivennikov S, Karin E, Karin M . Inflammation and colon cancer. Gastroenterology 2010; 138: e2105.

    Article  Google Scholar 

  6. Westbrook AM, Szakmary A, Schiestl RH . Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 2010; 705: 40–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaanan A, Meunier K, Sangar F, Flejou JF, Praz F . Microsatellite instability in colorectal cancer: from molecular oncogenic mechanisms to clinical implications. Cell Oncol (Dordr) 2011; 34: 155–176.

    Article  Google Scholar 

  8. Mahaney BL, Meek K, Lees-Miller SP . Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009; 417: 639–650.

    Article  CAS  PubMed  Google Scholar 

  9. Weterings E, Chen DJ . The endless tale of non-homologous end-joining. Cell Res 2008; 18: 114–124.

    Article  CAS  PubMed  Google Scholar 

  10. Walker JR, Corpina RA, Goldberg J . Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001; 412: 607–614.

    Article  CAS  PubMed  Google Scholar 

  11. Gottlieb TM, Jackson SP . The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 1993; 72: 131–142.

    Article  CAS  PubMed  Google Scholar 

  12. Ma Y, Pannicke U, Schwarz K, Lieber MR . Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002; 108: 781–794.

    Article  CAS  PubMed  Google Scholar 

  13. Sekiguchi JM, Ferguson DO . DNA double-strand break repair: a relentless hunt uncovers new prey. Cell 2006; 124: 260–262.

    Article  CAS  PubMed  Google Scholar 

  14. Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 1998; 396: 173–177.

    Article  CAS  PubMed  Google Scholar 

  15. Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 1998; 95: 891–902.

    Article  CAS  PubMed  Google Scholar 

  16. Gao Y, Ferguson DO, Xie W, Manis JP, Sekiguchi J, Frank KM et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 2000; 404: 897–900.

    Article  CAS  PubMed  Google Scholar 

  17. Bassing CH, Alt FW . The cellular response to general and programmed DNA double strand breaks. DNA repair (Amst) 2004; 3: 781–796.

    Article  CAS  Google Scholar 

  18. Puebla-Osorio N, Zhu C . DNA damage and repair during lymphoid development: antigen receptor diversity, genomic integrity and lymphomagenesis. Immunol Res 2008; 41: 103–122.

    Article  CAS  PubMed  Google Scholar 

  19. Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R et al. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002; 196: 469–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 2002; 109: 811–821.

    Article  CAS  PubMed  Google Scholar 

  21. Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004; 36: 63–68.

    Article  CAS  PubMed  Google Scholar 

  22. Rowan S, Ludwig RL, Haupt Y, Bates S, Lu X, Oren M et al. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. Embo J 1996; 15: 827–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Nguyen T, Puebla-Osorio N, Pang H, Dujka ME, Zhu C . DNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model. J Exp Med 2007; 204: 1453–1461.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tavana O, Puebla-Osorio N, Sang M, Zhu C . Absence of p53-dependent apoptosis combined with nonhomologous end-joining deficiency leads to a severe diabetic phenotype in mice. Diabetes 2010; 59: 135–142.

    Article  CAS  PubMed  Google Scholar 

  25. Gu Y, Seidl KJ, Rathbun GA, Zhu C, Manis JP, van der Stoep N et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 1997; 7: 653–665.

    Article  CAS  PubMed  Google Scholar 

  26. Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ et al. Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 1998; 2: 1–8.

    Article  CAS  PubMed  Google Scholar 

  27. Novac O, Matheos D, Araujo FD, Price GB, Zannis-Hadjopoulos M . In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 2001; 12: 3386–3401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004; 13: 627–638.

    Article  CAS  PubMed  Google Scholar 

  29. Subramanian C, Opipari AW Jr., Bian X, Castle VP, Kwok RP . Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2005; 102: 4842–4847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfingsten JS, Goodrich KJ, Taabazuing C, Ouenzar F, Chartrand P, Cech TR . Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 2012; 148: 922–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fell VL, Schild-Poulter C . Ku regulates signaling to DNA damage response pathways through the Ku70 von Willebrand A domain. Mol Cell Biol 2012; 32: 76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tavana O, Puebla-Osorio N, Kim J, Sang M, Jang S, Zhu C . Ku70 functions in addition to nonhomologous end joining in pancreatic beta-cells: a connection to beta-catenin regulation. Diabetes (e-pub ahead of print 8 March 2013).

  33. Gersemann M, Becker S, Kubler I, Koslowski M, Wang G, Herrlinger KR et al. Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis. Differentiation 2009; 77: 84–94.

    Article  CAS  PubMed  Google Scholar 

  34. Shirazi T, Longman RJ, Corfield AP, Probert CS . Mucins and inflammatory bowel disease. Postgrad Med J 2000; 76: 473–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldstein NS . Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. Am J Clin Pathol 2006; 125: 146–153.

    Article  CAS  PubMed  Google Scholar 

  36. Erdman SE, Poutahidis T . Roles for inflammation and regulatory T cells in colon cancer. Toxicol Pathol 2010; 38: 76–87.

    Article  CAS  PubMed  Google Scholar 

  37. Mantovani A, Allavena P, Sica A, Balkwill F . Cancer-related inflammation. Nature 2008; 454: 436–444.

    Article  CAS  PubMed  Google Scholar 

  38. Lin WW, Karin M . A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007; 117: 1175–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Becker C, Fantini MC, Wirtz S, Nikolaev A, Lehr HA, Galle PR et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 2005; 4: 217–220.

    Article  CAS  PubMed  Google Scholar 

  40. Crosnier C, Stamataki D, Lewis J . Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 2006; 7: 349–359.

    Article  CAS  PubMed  Google Scholar 

  41. Sipos F, Valcz G, Molnar B . Physiological and pathological role of local and immigrating colonic stem cells. World J Gastroenterol 2012; 18: 295–301.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bienz M, Clevers H . Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  43. Fodde R, Smits R, Clevers H . APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55–67.

    Article  CAS  PubMed  Google Scholar 

  44. Tetsu O, McCormick F . Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  45. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999; 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. Identification of c-MYC as a target of the APC pathway. Science 1998; 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  47. Gu Y, Jin S, Gao Y, Weaver DT, Alt FW . Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci USA 1997; 94: 8076–8081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoverter NP, Ting JH, Sundaresh S, Baldi P, Waterman ML . A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs. Mol Cell Biol 2012; 32: 3648–3662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lefrancois L, Lycke N . Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer's patch and lamina propria cells. Curr Protoc Immunol 2001; 3: 3.19.1–3.19.11.

    Google Scholar 

  50. Kavela S, Shinde SR, Ratheesh R, Viswakalyan K, Bashyam MD, Gowrishankar S et al. PNUTS functions as a proto-oncogene by sequestering PTEN. Cancer Res 2013; 73: 205–214.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the histology core facility from the Department of Immunology at The University of Texas MD Anderson Cancer Center. We thank Dr James You for the help with pathology and Mei Sang for her technical assistance. This study was partially supported by an Institutional Research Grant (CZ) and a sister Institution Fund from The University of Texas MD Anderson Cancer Center (CZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Zhu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puebla-Osorio, N., Kim, J., Ojeda, S. et al. A novel Ku70 function in colorectal homeostasis separate from nonhomologous end joining. Oncogene 33, 2748–2757 (2014). https://doi.org/10.1038/onc.2013.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.234

Keywords

This article is cited by

Search

Quick links