Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ERα, SKP2 and E2F-1 form a feed forward loop driving late ERα targets and G1 cell cycle progression

Abstract

Estrogen triggers transactivation coupled estrogen receptor α (ERα) proteolysis, but mechanisms thereof remain obscure. Present data link estrogen:ERα-driven transcription with cell cycle progression. Although liganded ERα induces many genes within 1–4 h, gene activation after 6 h is thought to be indirect. Here, we identify SKP2 as a late-acting coactivator that drives ERα targets to promote G1-to-S progression. Data support a model in which estrogen-activated cyclin E-CDK2 binds and phosphorylates ERαS341, to prime ERα-SCFSKP2 binding via SKP2-L248QTLL252 in late G1. SKP2 activates ERα ubiquitylation and proteolysis. Putative late ERα targets were identified by expression profiling. SKP2 knockdown attenuated E2F-1 and BLM induction. SKP2 overexpression, but not coactivator motif mutant SKP2-L248QTAA252, enhanced estrogen-induced E2F-1 and BLM expression. SKP2 knockdown impaired estrogen-stimulated ERα, SKP2, SRC3 and RNA polymerase II recruitment to E2F-1 and BLM promoters. This work not only identifies these late-activated genes as bona fide ERα targets but describes a novel mechanism for their periodic activation. SKP2 serves as dual ERα E3 ligase/coactivator for late-activated target genes, revealing a novel mechanism whereby ERα/SCFSKP2 transactivation of E2F-1 feeds forward to drive G1-to-S.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Migliaccio A, DiDomenico M, Castona C, DeFalco A, Bontempo P, Nola E et al. Tyrosine kinas/p21ras/MAP-kinase pathway activation by estradiol receptor complex in MCF-7 cells. EMBO J 1996; 15: 1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nilsson S, Gustafsson JA . Estrogen receptor transcription and transactivation: basic aspects of estrogen action. Breast Cancer Res 2000; 2: 360–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klinge CM . Estrogen receptor interaction with co-activators and co-repressors. Steroids 2000; 65: 227–251.

    Article  CAS  PubMed  Google Scholar 

  4. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM . Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA 2000; 97: 9042–9046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Danielian PS, White R, Lees JA, Parker MG . Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 1992; 11: 1025–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alarid ET, Bakopoulos N, Solodin N . Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol Endocrinol 1999; 13: 1522–1534.

    Article  CAS  PubMed  Google Scholar 

  7. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW . Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 1999; 96: 1858–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dace A, Zhao L, Park KS, Furuno T, Takamura N, Nakanishi M et al. Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors. Proc Natl Acad Sci USA 2000; 97: 8985–8990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen T, Horwitz KB, Lange CA . Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase dependent phosphorylation of serine 294. Mol Cell Biol 2001; 21: 6122–6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lonard DM, Nawaz Z, Smith CL, O'Malley BW . The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen reeptor-alpha transactivation. Mol Cell 2000; 5: 939–948.

    Article  CAS  PubMed  Google Scholar 

  11. Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 2003; 11: 695–707.

    Article  CAS  PubMed  Google Scholar 

  12. Alarid ET, Preisler-Mashek MT, Solodin NM . Thyroid hormone is an inhibitor of estrogen-induced degradation of estrogen receptor-alpha protein: estrogen-dependent proteolysis is not essential for receptor transactivation function in the pituitary. Endocrinology 2003; 144: 3469–3476.

    Article  CAS  PubMed  Google Scholar 

  13. Fan M, Nakshatri H, Nephew KP . Inhibiting proteasomal proteolysis sustains estrogen receptoralpha activation. Mol Endocrinol 2004; 18: 2603–2615.

    Article  CAS  PubMed  Google Scholar 

  14. Tansey WP . Transcriptional activation: risky business. Genes Dev 2001; 15: 1045–1050.

    Article  CAS  PubMed  Google Scholar 

  15. Glickman MH, Ciechanover A . The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82: 373–428.

    Article  CAS  PubMed  Google Scholar 

  16. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ et al. The Angelman syndromeassociated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 1999; 19: 1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saji S, Okumura N, Eguchi H, Nakashima S, Suzuki A, Toi M et al. MDM2 enhances the function of estrogen receptor alpha in human breast cancer cells. Biochem Biophys Res Commun 2001; 281: 259–265.

    Article  CAS  PubMed  Google Scholar 

  18. Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M . Identification of a human family of F-box proteins. Curr Biol 1999; 9: 1177–1179.

    Article  CAS  PubMed  Google Scholar 

  19. Nigg EA . Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 1995; 17: 471–480.

    Article  CAS  PubMed  Google Scholar 

  20. Woo RA, Poon RY . Cyclin-dependent kinases and S phase control in mammalian cells. cc 2003; 2: 316–324.

    CAS  Google Scholar 

  21. Carrano AC, Eytan E, Hershko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    Article  CAS  PubMed  Google Scholar 

  22. Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS et al. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 2000; 408: 381–386.

    Article  CAS  PubMed  Google Scholar 

  23. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M et al. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 2005; 20: 9–19.

    Article  CAS  PubMed  Google Scholar 

  24. Bhatt S, Xiao Z, Meng Z, Katzenellenbogen BS . Phosphorylation by p38 mitogen-activated protein kinase promotes estrogen receptor alpha turnover and functional activity via the SCFSKP2 proteasomal complex. Mol Cell Biol 2012; 32: 1928–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sun J, Zhou W, Kaliappan K, Nawaz Z, Slingerland JM . ERα phosphorylation at Y537 by Src triggers E6-AP-ERαBinding, ERα ubiquitylation, promoter occupancy, and target gene expression. Mol Endocrinol 2012; 26: 1567–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu Y, Rosenblatt J, Morgan DO . Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J 1992; 11: 3995–4005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F et al. The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J 2000; 19: 5362–5375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chu I, Arnaout A, Loiseau S, Sun J, Seth A, McMahon C et al. Src promotes estrogen-dependent estrogen receptor alpha proteolysis in human breast cancer. J Clin Invest 2007; 117: 2205–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 2007; 3: e87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006; 38: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  31. Lin Z, Reierstad S, Huang CC, Bulun SE . Novel estrogen receptor-α binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res 2007; 67: 5017–5024.

    Article  CAS  PubMed  Google Scholar 

  32. Kennedy BA, Gao W, Huang TH, Jin VX . HRTBLDb: an informative data resource for hormone receptors target binding loci. Nucleic Acids Res 2010; 38: Database issue D676–D681.

    Article  CAS  PubMed  Google Scholar 

  33. Iso T, Futami K, Iwamoto T, Furuichi Y . Modulation of the expression of bloom helicase by estrogenic agents. Biol Pharm Bull 2007; 30: 266–271.

    Article  CAS  PubMed  Google Scholar 

  34. Wang W, Dong L, Saville B, Safe S . Transcriptional activation of E2F1 gene expression by 17betaestradiol in MCF-7 cells is regulated by NF-Y-Sp1/estrogen receptor interactions. Mol Endocrinol 1999; 13: 1373–1387.

    CAS  PubMed  Google Scholar 

  35. Nawaz Z, O'Malley BW . Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol Endocrinol 2004; 18: 493–499.

    Article  CAS  PubMed  Google Scholar 

  36. Fan S, Wang J, Yuan R, Ma Y, Meng Q, Erdos MR et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science 1999; 284: 1354–1356.

    Article  CAS  PubMed  Google Scholar 

  37. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 2003; 423: 545–550.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson AE, Le IP, Buchwalter A, Burnatowska-Hledin MA . Estrogen-dependent growth and estrogen receptor (ER)-alpha concentration in T47D breast cancer cells are inhibited by VACM-1, a cul 5 gene. Mol Cell Biochem 2007; 301: 13–20.

    Article  CAS  PubMed  Google Scholar 

  39. Yu ZK, Gervais JL, Zhang H . Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA 1998; 95: 11324–11329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000; 19: 2069–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li X, Zhao Q, Liao R, Sun P, Wu X . The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 2003; 278: 30854–30858.

    Article  CAS  PubMed  Google Scholar 

  42. Moro L, Arbini AA, Marra E, Greco M . Up-regulation of Skp2 after prostate cancer cell adhesion to basement membranes results in BRCA2 degradation and cell proliferation. J Biol Chem 2006; 281: 22100–22107.

    Article  CAS  PubMed  Google Scholar 

  43. Wu J, Zhang X, Zhang L, Wu CY, Rezaeian AH, Chan CH et al. Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell 2012; 46: 351–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P . Cdk2 knockout mice are viable. Curr Biol 2003; 13: 1775–1785.

    Article  CAS  PubMed  Google Scholar 

  45. Pagano M, Pepperkok R, Ludas J, Baldin V, Ansorge W, Bartek J et al. Regultion of the human cell cycle by the Cdk2 protein kinase. J Cell Biol 1993; 121: 101–111.

    Article  CAS  PubMed  Google Scholar 

  46. Tsai LH, Lees E, Faha B, Harlow E, Riabowol K . The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 1993; 8: 1593–1602.

    CAS  PubMed  Google Scholar 

  47. Chi Y, Welcker M, Hizli AA, Posakony JJ, Aebersold R, Clurman BE . Identification of CDK2 substrates in human cell lysates. Genome Biol 2008; 9: R149.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Harper JW, Adams PD . Cyclin-dependent kinases. Chem Rev 2001; 101: 2511–2526.

    Article  CAS  PubMed  Google Scholar 

  49. Dyson N . The regulation of E2F by pRB-family proteins. Genes Develop 1998; 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L, Wang C . F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 2005; 25: 2615–2627.

    Article  Google Scholar 

  51. Chu IM, Hengst L, Slingerland JM . The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008; 8: 253–267.

    Article  CAS  PubMed  Google Scholar 

  52. Marti A, Wirbelauer C, Scheffner M, Krek W . Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1999; 1: 14–19.

    Article  CAS  PubMed  Google Scholar 

  53. Won KA, Reed SI . Activation of cyclin E/CDK2 is coupled to site-specific utophosphorylation and ubiquitin-dependent degradation of cyclin. EMBO J 1996; 15: 4182–4193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Atsriku C, Britton DJ, Held JM, Schilling B, Scott GK, Gibson BW et al. Systematic mapping of posttranslational modifications in human estrogen receptor-α with emphasis on novel phosphorylation sites. Mol Cell Proteomics 2009; 8: 467–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Held JM, Britton DJ, Scott GK, Lee EL, Schilling B, Baldwin MA et al. Ligand binding promotes CDK-dependent phosphorylation of ER-alpha on hinge serine 294 but inhibits ligand 30 independent phosphorylation of serine 305. Mol Cancer Res 2012; 10: 1120–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dubik D, Dembinski TC, Shiu RP . Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 1987; 47 (24.Pt.1): 6517–6521.

    CAS  PubMed  Google Scholar 

  57. Klinge CM . Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 2001; 29: 2905–2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sherr CJ . The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 2000; 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  59. Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S et al. p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 2007; 128: 281–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Daly RJ, Darbre PD . Cellular and molecular events in loss of estrogen sensitivity in ZR-75-1 and T-47-D human breast cancer cells. Cancer Res 1990; 50: 5868–5875.

    CAS  PubMed  Google Scholar 

  61. Kraus WL, Kadonaga JT . p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev 1998; 12: 331–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun J, Nawaz Z, Slingerland JM . Long-range activation of GREB1 by estrogen receptor via three distal consensus estrogen responsive elements in breast cancer cells. Mol Endocrinol 2007; 21: 2651–2662.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M Pagano for bacculovirus stocks (CUL1, SKP1, RBX1, SKP2), WL Kraus for pPK-FLAG-ERα plasmid, H-K Lin for pcDNA4-His-Max-Xpress SKP2, and J Sun for technical intellectual input. This work was supported by NIH R01CA123415 (JMS and ZN), and a US DOD Pre-doctoral grant W81XWH-11-1-0097 (WZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Slingerland.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Srinivasan, S., Nawaz, Z. et al. ERα, SKP2 and E2F-1 form a feed forward loop driving late ERα targets and G1 cell cycle progression. Oncogene 33, 2341–2353 (2014). https://doi.org/10.1038/onc.2013.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.197

Keywords

This article is cited by

Search

Quick links