Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Insulin-like growth factor-I regulates GPER expression and function in cancer cells

Abstract

Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pike MC, Pearce CL, Wu AH . Prevention of cancers of the breast, endometrium and ovary. Oncogene 2004; 23: 6379–6391.

    Article  CAS  Google Scholar 

  2. Bai Z, Gust R . Breast cancer, estrogen receptor and ligands. Arch Pharm (Weinheim) 2009; 342: 133–149.

    Article  CAS  Google Scholar 

  3. Kumar V, Chambon P . The estrogen receptor binds to its responsive element as a ligand-induced homodimer. Cell 1988; 55: 145–156.

    Article  CAS  Google Scholar 

  4. Tsai SY, Tsai MJ, O’ Malley BW . Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 1989; 57: 443–448.

    Article  CAS  Google Scholar 

  5. Thomas P, Pang Y, Filardo EJ, Dong J . Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 2005; 146: 624–632.

    Article  CAS  Google Scholar 

  6. Sirianni R, Chimento A, Ruggiero G, De Luca A, Lappano R, Andò S et al. The novel estrogen receptor GPR30 mediates the proliferative effects induced by17ß-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 2008; 149: 5043–5051.

    Article  CAS  Google Scholar 

  7. Prossnitz ER, Maggiolini M . Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 2009; 308: 32–38.

    Article  CAS  Google Scholar 

  8. Maggiolini M, Picard D . The unfolding stories of GPR30, a new membrane-bound estrogen receptor. J Endocrinol 2010; 204: 105–114.

    Article  CAS  Google Scholar 

  9. Filardo EJ, Quinn JA, Bland KI, Frackelton Jr AR . Estrogen-induced activation of Erk-1and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via transactivation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 2000; 14: 1649–1660.

    Article  CAS  Google Scholar 

  10. Filardo EJ, Quinn JA, Frackelton Jr AR, Bland KI . Estrogen action via the G protein coupled receptor, GPR30:stimulation of adenylyl cyclase and c-AMP mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 2002; 16: 70–84.

    Article  CAS  Google Scholar 

  11. Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Carpino A et al. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17β-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 2007; 67: 1859–1866.

    Article  CAS  Google Scholar 

  12. Pandey DP, Lappano R, Albanito L, Madeo A, Maggiolini M, Picard D . Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J 2009; 28: 523–532.

    Article  Google Scholar 

  13. Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17 beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 2004; 279: 27008–27016.

    Article  CAS  Google Scholar 

  14. Albanito L, Sisci D, Aquila S, Brunelli E, Vivacqua A, Madeo A et al. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology 2008; 149: 3799–3808.

    Article  CAS  Google Scholar 

  15. Vivacqua A, Lappano R, De Marco P, Sisci D, Aquila S, De Amicis F et al. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF a in estrogen receptor alpha-positive cancer cells. Mol Endocrinol 2009; 23: 1815–1826.

    Article  CAS  Google Scholar 

  16. Filardo EJ, Graeber CT, Quinn JA, Resnick MB, Giri D, De Lellis RA et al. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinic pathologic determinants of tumor progression. Clin Cancer Res 2006; 12: 6359–6366.

    Article  CAS  Google Scholar 

  17. Smith HO, Leslie KK, Singh M, Qualls CR, Revankar CM, Joste NE et al. GPR30: a novel indicator of poor survival for endometrial carcinoma. Am J Obstet Gynecol 2007; 196: 1–11.

    Article  Google Scholar 

  18. Stewart CE, Rotwein P . Growth, differentiation, and survival multiple physiological functions for insulin-like growth factors. Physiol Rev 1996; 76: 1005–1026.

    Article  CAS  Google Scholar 

  19. LeRoith D, Roberts Jr CT . The insulin-like growth factor system and cancer. Cancer Lett 2003; 195: 127–137.

    Article  CAS  Google Scholar 

  20. Belfiore A, Frasca F . IGF and insulin receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13: 381–406.

    Article  Google Scholar 

  21. Rosenzweig SA, Atreya HS . Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol 2010; 80: 1115–1124.

    Article  CAS  Google Scholar 

  22. Belfiore A . The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des 2007; 13: 671–686.

    Article  CAS  Google Scholar 

  23. Lann D, LeRoith D . The role of endocrine insulin-like growth factor-I and insulin in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13: 371–379.

    Article  Google Scholar 

  24. Baron S, Escande A, Alberola G, Bystricky K, Balaguer P, Richard-Foy H . Estrogen receptor and the activating protein-1 complex cooperate during insulin-like growth factor-i-induced transcriptional activation of the pS2/TFF1gene. J Biol Chem 2007; 282: 11732–11741.

    Article  CAS  Google Scholar 

  25. Cascio S, Bartella V, Garofalo C, Russo A, Giordano A, Surmacz E . Insulin-like growth factor1 differentially regulates estrogen receptor-dependent transcription at estrogen response element and AP-1 sites in breast cancer cells. J Biol Chem 2007; 282: 3498–3506.

    Article  CAS  Google Scholar 

  26. Mawson A, Lai A, Carroll JS, Sergio CM, Mitchell CJ, Sarcevic B . Estrogen and insulin/IGF-1cooperatively stimulate cell cycle progression in MCF7 breast cancer cells through differential regulation of c-Myc and cyclin D1. Mol Cell Endocrinol 2005; 229: 161–173.

    Article  CAS  Google Scholar 

  27. Fagan DH, Yee D . Cross talk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 2008; 13: 423–429.

    Article  Google Scholar 

  28. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995; 270: 1491–1494.

    Article  CAS  Google Scholar 

  29. Lappano R, Maggiolini M . G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 2011; 10: 47–60.

    Article  CAS  Google Scholar 

  30. Young SH, Rozengurt E . Crosstalk between insulin receptor and G protein coupled receptor signaling systems leads to Ca2+ oscillations in pancreatic cancer PANC-1 cells. Biochem Biophys Res Commun 2010; 401: 154–158.

    Article  CAS  Google Scholar 

  31. Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E . Metformin disrupts cross talk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 2009; 69: 6539–6545.

    Article  CAS  Google Scholar 

  32. Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A et al. 17β Estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein coupled-receptor GPR30. Mol Pharmacol 2006; 70: 1414–1423.

    Article  CAS  Google Scholar 

  33. Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D, Ando S et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 2006; 20: 631–646.

    Article  CAS  Google Scholar 

  34. Hess J, Angel P, Schorpp-Kistner M . AP-1subunits: quarrel and harmony among siblings. J Cell Sci 2004; 117: 5965–5973.

    Article  CAS  Google Scholar 

  35. Madeo A, Maggiolini M . Nuclear alternate estrogen receptor GPR30 mediates 17b-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 2010; 70: 6036–6046.

    Article  CAS  Google Scholar 

  36. Bhowmick NA, Neilson EG, Moses HL . Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–337.

    Article  CAS  Google Scholar 

  37. Song RX, Zhang Z, Chen Y, Bao Y, Santen RJ . Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology 2007; 148: 4091–4101.

    Article  CAS  Google Scholar 

  38. Bradley LM, Gierthy JF, Pentecost BT . Role of insulin-like growth factor system on an estrogen-dependent cancer phenotype in the MCF-7 human breast cancer cell line. J Steroid Biochem Mol Biol 2008; 109: 185–196.

    Article  CAS  Google Scholar 

  39. Stewart AJ, Johnson MD, May FE, Westley BR . Role of insulin-like growth factors and the type I insulin-like growth factor receptor in the estrogen-stimulated proliferation of human breast cancer cells. J Biol Chem 1990; 265: 21172–21178.

    CAS  PubMed  Google Scholar 

  40. Mendoza RA, Enriquez MI, Mejia SM, Moody EE, Thordarson G . Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells. J Endocrinol 2011; 208: 1–9.

    Article  CAS  Google Scholar 

  41. Soos MA, Field CE, Siddle K . Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J 1993; 290: 419–426.

    Article  CAS  Google Scholar 

  42. Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y et al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 1999; 5: 1935–1944.

    CAS  Google Scholar 

  43. Zhang G, Li X, Zhang L, Zhao L, Jiang J, Wang J et al. The expression and role of hybrid insulin/insulin-like growth factor receptor type 1 in endometrial carcinoma cells. Cancer Genet Cytogenet 2010; 200: 140–148.

    Article  CAS  Google Scholar 

  44. Leask A, Abraham DJ . All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 2006; 23: 4803–4810.

    Article  Google Scholar 

  45. Holbourn KP, Acharya KR, Perbal B . The CCN family of proteins: structure–function relationships. Trends Biochem Sci 2008; 33: 461–473.

    Article  CAS  Google Scholar 

  46. Cortez V, Mann M, Brann DW, Vadlamudi RK . Extranuclear signaling by estrogen: role in breast cancer progression and metastasis. Minerva Ginecol 2010; 62: 573–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cowley SM, Hoare S, Mosselman S, Parker MG . Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem 1997; 272: 19858–19862.

    Article  CAS  Google Scholar 

  48. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A . Signal characteristics of G protein-transactivated EGF receptor. EMBO J 1997; 16: 7032–7044.

    Article  CAS  Google Scholar 

  49. Dalle S, Ricketts W, Imamura T, Vollenweider P, Olefsky JM . Insulin and Insulin-like growth factor I receptors utilize different G protein signaling components. J Biol Chem 2001; 276: 15688–15695.

    Article  CAS  Google Scholar 

  50. Rozengurt E, Sinnett-Smith J, Kisfalvi K . Cross talk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 2010; 16: 2505–2511.

    Article  CAS  Google Scholar 

  51. Akekawatchai C, Holland JD, Kochetkova M, Wallace JC, McColl SR . Transactivation of CXCR4 by the insulin-like growth factor-1 receptor (IGF-1R) in human MDA-MB-231 breast cancer epithelial cells. J Biol Chem 2005; 280: 39701–39708.

    Article  CAS  Google Scholar 

  52. Recchia AG, De Francesco EM, Vivacqua A, Sisci D, Panno ML, Andò S et al. The G protein-coupled receptor 30 is up-regulated by hypoxia inducible factor-1α (HIF-1α) in breast cancer cells and cardiomyocytes. J Biol Chem 2011; 286: 10773–10782.

    Article  CAS  Google Scholar 

  53. Chaqour B, Yang R, Sha Q . Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-kappa B activation. J Biol Chem 2006; 281: 20608–20622.

    Article  CAS  Google Scholar 

  54. Gerdes MJ, Myakishev M, Frost NA, Rishi V, Moitra J, Acharya A et al. Activator protein-1 activity regulates epithelial tumor cell identity. Cancer Res 2006; 66: 7578–7588.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC, project no. 8925/2009 to MM and project no. 10625/2009 to AB; project Calabria 2011 to AB and MM) (http://www.airc.it/), Fondazione Cassa di Risparmio di Calabria e Lucania and Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) (project PRIN 2008PK2WCW/2008 to MM and project PRIN 2008BKRFBH_005 to AB) (http://www.istruzione.it/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Maggiolini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Marco, P., Bartella, V., Vivacqua, A. et al. Insulin-like growth factor-I regulates GPER expression and function in cancer cells. Oncogene 32, 678–688 (2013). https://doi.org/10.1038/onc.2012.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.97

Keywords

This article is cited by

Search

Quick links