Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression

Abstract

MicroRNAs (miRNAs) from the gene cluster miR-143–145 are diminished in cells of colorectal tumor origin when compared with normal colon epithelia. Until now, no report has addressed the coordinate action of these miRNAs in colorectal cancer (CRC). In this study, we performed a comprehensive molecular and functional analysis of the miRNA cluster regulatory network. First, we evaluated proliferation, migration, anchorage-independent growth and chemoresistance in the colon tumor cell lines after miR-143 and miR-145 restoration. Then, we assessed the contribution of single genes targeted by miR-143 and miR-145 by reinforcing their expression and checking functional recovery. Restoring miR-143 and miR-145 in colon cancer cells decreases proliferation, migration and chemoresistance. We identified cluster of differentiation 44 (CD44), Kruppel-like factor 5 (KLF5), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) as proteins targeted by miR-143 and miR-145. Their re-expression can partially revert a decrease in transformation properties caused by the overexpression of miR-143 and miR-145. In addition, we determined a set of mRNAs that are diminished after reinforcing miR-143 and miR-145 expression. The whole transcriptome analysis ascertained that downregulated transcripts are enriched in predicted target genes in a statistically significant manner. A number of additional genes, whose expression decreases as a direct or indirect consequence of miR-143 and miR-145, reveals a complex regulatory network that affects cell signaling pathways involved in transformation. In conclusion, we identified a coordinated program of gene repression by miR-143 and miR-145, in CRC, where either of the two miRNAs share a target transcript, or where the target transcripts share a common signaling pathway. Major mediators of the oncosuppression by miR-143 and miR-145 are genes belonging to the growth factor receptor–mitogen-activated protein kinase network and to the p53 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y . Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009; 77: 12–21.

    Article  CAS  PubMed  Google Scholar 

  3. Gao W, Yu Y, Cao H, Shen H, Li X, Pan S et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 2010; 64: 399–408.

    Article  CAS  PubMed  Google Scholar 

  4. Bockmeyer CL, Christgen M, Muller M, Fischer S, Ahrens P, Langer F et al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 2011; 130: 735–745.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    Article  CAS  PubMed  Google Scholar 

  6. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 2010; 24: 2754–2759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Villadsen SB, Bramsen JB, Ostenfeld MS, Wiklund ED, Fristrup N, Gao S et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer 2011; 106: 366–374.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Batliner J, Buehrer E, Fey MF, Tschan MP . Inhibition of the miR-143/145 cluster attenuated neutrophil differentiation of APL cells. Leuk Res 2012; 36: 237–240.

    Article  CAS  PubMed  Google Scholar 

  10. Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R et al. 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 2007; 282: 32582–32590.

    Article  CAS  PubMed  Google Scholar 

  11. Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 2009; 101: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.

    Article  CAS  PubMed  Google Scholar 

  13. Nandan MO, McConnell BB, Ghaleb AM, Bialkowska AB, Sheng H, Shao J et al. Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 2008; 134: 120–130.

    Article  CAS  PubMed  Google Scholar 

  14. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 2008; 134: 62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baron U, Bujard H . Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 2000; 327: 401–421.

    Article  CAS  PubMed  Google Scholar 

  16. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  18. Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY et al. miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 2011; 12: 300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 2011; 43: 242–245.

    Article  CAS  PubMed  Google Scholar 

  20. Elcheva I, Goswami S, Noubissi FK, Spiegelman VS . CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell 2009; 35: 240–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  22. Nonne N, Ameyar-Zazoua M, Souidi M, Harel-Bellan A . Tandem affinity purification of miRNA target mRNAs (TAP Tar). Nucleic Acids Res 2010; 38: e20.

    Article  PubMed  Google Scholar 

  23. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  PubMed  Google Scholar 

  25. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  PubMed  Google Scholar 

  26. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colo cancer: role of G1 regulators. MOl Cancer Res 2011; 9: 960–975.

    Article  CAS  PubMed  Google Scholar 

  29. Kent OA, Fox-Talbot K, Halushka MK . RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 2013; 32: 2576–2585..

    Article  CAS  PubMed  Google Scholar 

  30. Bushati N, Cohen SM . microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175–205.

    Article  CAS  PubMed  Google Scholar 

  31. Kloosterman WP, Plasterk RH . The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441–450.

    Article  CAS  PubMed  Google Scholar 

  32. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  33. Baron U, Gossen M, Bujard H . Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res 1997; 25: 2723–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ricci-Vitiani L, Pedini F, Mollinari C, Condorelli G, Bonci D, Bez A et al. Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. J Exp Med 2004; 200: 1257–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ricci-Vitiani L, Mollinari C, di Martino S, Biffoni M, Pilozzi E, Pagliuca A et al. Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells. Faseb J 2010; 24: 4291–4301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from Associazione Italiana per la Ricerca sul Cancro, AIRC (Start-up 6326 to LR-V and Regional Fellowship to CV). We thank Tania Merlino for contribution in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pagliuca.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagliuca, A., Valvo, C., Fabrizi, E. et al. Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 32, 4806–4813 (2013). https://doi.org/10.1038/onc.2012.495

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.495

Keywords

This article is cited by

Search

Quick links