Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

β-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer

Abstract

Apc-driven tumor formation in patients and Apc-mutant mouse models is generally attributed to increased levels of β-catenin signaling. We and others have proposed that a specific level of β-catenin signaling is required to successfully initiate tumor formation, and that each tissue prefers different dosages of signaling. This is illustrated by APC genotype−tumor phenotype correlations in cancer patients, and by the different tumor phenotypes displayed by different Apc-mutant mouse models. Apc1638N mice, associated with intermediate β-catenin signaling, characteristically develop intestinal tumors (<10) and extra-intestinal tumors, including cysts and desmoids. Apc1572T mice associated with lower levels of β-catenin signaling are free of intestinal tumors, but instead develop mammary tumors. Although the concept of β-catenin signaling dosage and its impact on tumor growth among tissues is gaining acceptance, it has not been formally proven. Additionally, alternative explanations for Apc-driven tumor formation have been proposed. To obtain direct evidence for the dominant role of β-catenin dosage in tumor formation and tissue-specific tumor predisposition, we crossed Apc1638N mice with heterozygous β-catenin knockout mice, thereby reducing β-catenin levels. Whereas all the Apc1638N;Ctnnb1+/+ mice developed gastrointestinal tumors, none were present in the Apc1638N;Ctnnb1−/+ mice. Incidence of other Apc1638N-associated lesions, including desmoids and cysts, was strongly reduced as well. Interestingly, Apc1638N;Ctnnb1−/+ females showed an increased incidence of mammary tumors, which are normally rarely observed in Apc1638N mice, and the histological composition of the tumors resembled that of Apc1572T-related tumors. Hereby, we provide in vivo genetic evidence confirming the dominant role of β-catenin dosage in tumor formation and in dictating tumor predisposition among tissues in Apc-driven cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature 2005; 434: 843–850.

    Article  CAS  Google Scholar 

  2. Albuquerque C, Bakker ER, van Veelen W, Smits R . Colorectal cancers choosing sides. Biochim Biophys Acta 2011; 1816: 219–231.

    CAS  PubMed  Google Scholar 

  3. Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ et al. The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 2002; 11: 1549–1560.

    Article  CAS  Google Scholar 

  4. Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J et al. The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's ‘two-hit’ hypothesis. Nat Med 1999; 5: 1071–1075.

    Article  CAS  Google Scholar 

  5. Crabtree M, Sieber OM, Lipton L, Hodgson SV, Lamlum H, Thomas HJ et al. Refining the relation between ‘first hits’ and ‘second hits’ at the APC locus: the 'loose fit' model and evidence for differences in somatic mutation spectra among patients. Oncogene 2003; 22: 4257–4265.

    Article  CAS  Google Scholar 

  6. Smits R, Hofland N, Edelmann W, Geugien M, Jagmohan-Changur S, Albuquerque C et al. Somatic Apc mutations are selected upon their capacity to inactivate the beta-catenin downregulating activity. Genes Chromosomes Cancer 2000; 29: 229–239.

    Article  CAS  Google Scholar 

  7. Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S et al. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 2012, e-pub ahead of print 27 January 2012 doi:10.1136/gutjnl-2011-301601.

    Article  Google Scholar 

  8. Albuquerque C, Baltazar C, Filipe B, Penha F, Pereira T, Smits R et al. Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosomes Cancer 2010; 49: 746–759.

    Article  CAS  Google Scholar 

  9. Incassati A, Chandramouli A, Eelkema R, Cowin P . Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast Cancer Res 2010; 12: 213.

    Article  CAS  Google Scholar 

  10. Smits R, van der Houven van Oordt W, Luz A, Zurcher C, Jagmohan-Changur S, Breukel C et al. Apc1638N: a mouse model for familial adenomatous polyposis-associated desmoid tumors and cutaneous cysts. Gastroenterology 1998; 114: 275–283.

    Article  CAS  Google Scholar 

  11. Gaspar C, Franken P, Molenaar L, Breukel C, van der Valk M, Smits R et al. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis. PLoS Genet 2009; 5: e1000547.

    Article  Google Scholar 

  12. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 2001; 3: 433–438.

    Article  CAS  Google Scholar 

  13. Nathke I . Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer 2006; 6: 967–974.

    Article  Google Scholar 

  14. Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K et al. A two-step model for colon adenoma initiation and progression caused by APC loss. Cell 2009; 137: 623–634.

    Article  CAS  Google Scholar 

  15. Schneikert J, Brauburger K, Behrens J . APC mutations in colorectal tumours from FAP patients are selected for CtBP-mediated oligomerization of truncated APC. Hum Mol Genet 2011; 20: 3554–3564.

    Article  CAS  Google Scholar 

  16. Hamada F, Bienz M . The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell 2004; 7: 677–685.

    Article  CAS  Google Scholar 

  17. Fodde R, Edelmann W, Yang K, van Leeuwen C, Carlson C, Renault B et al. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. Proc Natl Acad Sci USA 1994; 91: 8969–8973.

    Article  CAS  Google Scholar 

  18. Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W . beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001; 105: 533–545.

    Article  CAS  Google Scholar 

  19. Mahmoud NN, Bilinski RT, Churchill MR, Edelmann W, Kucherlapati R, Bertagnolli MM . Genotype-phenotype correlation in murine Apc mutation: differences in enterocyte migration and response to sulindac. Cancer Res 1999; 59: 353–359.

    CAS  PubMed  Google Scholar 

  20. Buchert M, Athineos D, Abud HE, Burke ZD, Faux MC, Samuel MS et al. Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo. PLoS Genet 2010; 6: e1000816.

    Article  Google Scholar 

  21. Janssen KP, Alberici P, Fsihi H, Gaspar C, Breukel C, Franken P et al. APC and oncogenic KRAS are synergistic in enhancing Wnt signaling in intestinal tumor formation and progression. Gastroenterology 2006; 131: 1096–1109.

    Article  CAS  Google Scholar 

  22. Smits R, Kartheuser A, Jagmohan-Changur S, Leblanc V, Breukel C, de Vries A et al. Loss of Apc and the entire chromosome 18 but absence of mutations at the Ras and Tp53 genes in intestinal tumors from Apc1638N, a mouse model for Apc-driven carcinogenesis. Carcinogenesis 1997; 18: 321–327.

    Article  CAS  Google Scholar 

  23. Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 2007; 67: 9721–9730.

    Article  CAS  Google Scholar 

  24. Shoemaker AR, Luongo C, Moser AR, Marton LJ, Dove WF . Somatic mutational mechanisms involved in intestinal tumor formation in Min mice. Cancer Res 1997; 57: 1999–2006.

    CAS  PubMed  Google Scholar 

  25. Obrador-Hevia A, Chin SF, Gonzalez S, Rees J, Vilardell F, Greenson JK et al. Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas. J Pathol 2010; 221: 57–67.

    Article  CAS  Google Scholar 

  26. Fodde R, Tomlinson I . Nuclear beta-catenin expression and Wnt signalling: in defence of the dogma. J Pathol 2010; 221: 239–241.

    Article  Google Scholar 

  27. Haigis KM, Dove WF . A Robertsonian translocation suppresses a somatic recombination pathway to loss of heterozygosity. Nat Genet 2003; 33: 33–39.

    Article  CAS  Google Scholar 

  28. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 2008; 14: 447–457.

    Article  CAS  Google Scholar 

  29. Athineos D, Sansom OJ . Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene 2010; 29: 2585–2590.

    Article  CAS  Google Scholar 

  30. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 1999; 18: 5931–5942.

    Article  CAS  Google Scholar 

  31. Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 1999; 13: 1309–1321.

    Article  CAS  Google Scholar 

  32. Lewis A, Davis H, Deheragoda M, Pollard P, Nye E, Jeffery R et al. The C-terminus of Apc does not influence intestinal adenoma development or progression. J Pathol 2012; 226: 73–83.

    Article  CAS  Google Scholar 

  33. van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ER et al. {Beta}-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut 2011; 60: 1204–1212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr J Huelsken for providing Ctnnb1fl/+ mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Smits.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, E., Hoekstra, E., Franken, P. et al. β-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer. Oncogene 32, 4579–4585 (2013). https://doi.org/10.1038/onc.2012.449

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.449

Keywords

This article is cited by

Search

Quick links