Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo

Abstract

MicroRNAs are important regulators of gene expression in normal development and disease. miR-9 is overexpressed in several cancer forms, including brain tumours, hepatocellular carcinomas, breast cancer and Hodgkin lymphoma (HL). Here we demonstrated a relevance for miR-9 in HL pathogenesis and identified two new targets Dicer1 and HuR. HL is characterized by a massive infiltration of immune cells and fibroblasts in the tumour, whereas malignant cells represent only 1% of the tumour mass. These infiltrates provide important survival and growth signals to the tumour cells, and several lines of evidence indicate that they are essential for the persistence of HL. We show that inhibition of miR-9 leads to derepression of DICER and HuR, which in turn results in a decrease in cytokine production by HL cells followed by an impaired ability to attract normal inflammatory cells. Finally, inhibition of miR-9 by a systemically delivered antimiR-9 in a xenograft model of HL increases the protein levels of HuR and DICER1 and results in decreased tumour outgrowth, confirming that miR-9 actively participates in HL pathogenesis and points to miR-9 as a potential therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE et al. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res 2009; 15: 5878–5887.

    Article  CAS  Google Scholar 

  2. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell Mol Life Sci [Review] 2010; 140: 883–899.

    CAS  Google Scholar 

  3. Kuppers R . The biology of Hodgkin's lymphoma. Nat Rev Cancer 2009; 9: 15–27.

    Article  Google Scholar 

  4. Brauninger A, Schmitz R, Bechtel D, Renne C, Hansmann ML, Kuppers R . Molecular biology of Hodgkin's and Reed/Sternberg cells in Hodgkin's lymphoma. Int J Cancer 2006; 118: 1853–1861.

    Article  Google Scholar 

  5. Krol J, Loedige I, Filipowicz W . The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11: 597–610.

    Article  CAS  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ . Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  Google Scholar 

  7. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247–256.

    Article  CAS  Google Scholar 

  8. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 2009; 106: 5282–5287.

    Article  CAS  Google Scholar 

  9. Lawrie CH, Saunders NJ, Soneji S, Palazzo S, Dunlop HM, Cooper CD et al. MicroRNA expression in lymphocyte development and malignancy. Leukemia 2008; 22: 1440–1446.

    Article  CAS  Google Scholar 

  10. Van Vlierberghe P, De Weer A, Mestdagh P, Feys T, De Preter K, De Paepe P et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br J Haematol 2009; 147: 686–690.

    Article  CAS  Google Scholar 

  11. Navarro A, Gaya A, Martinez A, Urbano-Ispizua A, Pons A, Balague O et al. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 2008; 111: 2825–2832.

    Article  CAS  Google Scholar 

  12. Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol 2008; 173: 242–252.

    Article  CAS  Google Scholar 

  13. Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo Dicer1 is a haploinsufficient tumor suppressor. Cell Death Differ 2010; 17: 8.

    Article  Google Scholar 

  14. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 2009; 23: 4.

    Article  Google Scholar 

  15. Khabar KS . Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cell Mol Life Sci 2010; 67: 2937–2955.

    Article  CAS  Google Scholar 

  16. Anderson P . Post-transcriptional control of cytokine production. Nat Immunol 2008; 9: 353–359.

    Article  CAS  Google Scholar 

  17. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 2011; 43: 371–378.

    Article  CAS  Google Scholar 

  18. Lopez-Rodriguez C, Aramburu J, Jin L, Rakeman AS, Michino M, Rao A . Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 2001; 15: 47–58.

    Article  CAS  Google Scholar 

  19. Medzhitov R, Horng T . Transcriptional control of the inflammatory response. Nat Rev Immunol 2009; 9: 692–703.

    Article  CAS  Google Scholar 

  20. Ørom UA NF, Lund AH . MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30: 11.

    Article  Google Scholar 

  21. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2010; 17: 236–245.

    Article  CAS  Google Scholar 

  22. Wynendaele J, Bohnke A, Leucci E, Nielsen SJ, Lambertz I, Hammer S et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 2010; 70: 9641–9649.

    Article  CAS  Google Scholar 

  23. Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M . Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA 2004; 101: 2987–2992.

    Article  Google Scholar 

  24. Marstrand TT, Frellsen J, Moltke I, Thiim M, Valen E, Retelska D et al. Asap: a framework for over-representation statistics for transcription factor binding sites. PLoS One 2008; 3: e1623.

    Article  Google Scholar 

  25. Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 2011; 43: 327–339.

    Article  CAS  Google Scholar 

  26. Lebedeva S, Jens M, Theil K, Schwanhausser B, Selbach M, Landthaler M et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol Cell 2011; 43: 340–352.

    Article  CAS  Google Scholar 

  27. Dewan MZ WM, Ahmed S, Terashima K, Horiuchi S, Sata T, Honda M et al. Hodgkin's lymphoma cells are efficiently engrafted and tumor marker CD30 is expressed with constitutive nuclear factor-kappaB activity in unconditioned NOD/SCID/gammac(null) mice. Cancer Sci 2005; 96: 7.

    Article  Google Scholar 

  28. Ventura A, Jacks T . MicroRNAs and cancer: short RNAs go a long way. Cell 2009; 136: 586–591.

    Article  CAS  Google Scholar 

  29. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  Google Scholar 

  30. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  Google Scholar 

  31. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S et al. A MicroRNA targeting dicer for metastasis control. Cell 2010; 141: 1195–1207.

    Article  CAS  Google Scholar 

  32. Dean JL, Sully G, Clark AR, Saklatvala J . The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 2004; 16: 1113–1121.

    Article  CAS  Google Scholar 

  33. Lu JY, Schneider RJ . Tissue distribution of AU-rich mRNA-binding proteins involved in regulation of mRNA decay. J Biol Chem 2004; 279: 12974–12979.

    Article  CAS  Google Scholar 

  34. Kawai T, Lal A, Yang X, Galban S, Mazan-Mamczarz K, Gorospe M . Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol 2006; 26: 3295–3307.

    Article  CAS  Google Scholar 

  35. Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H . Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res 2005; 33: 4813–4827.

    Article  CAS  Google Scholar 

  36. Katsanou V PO, Milatos S, Blackshear PJ, Anderson P, Kollias G, Kontoyiannis DL . HuR as a negative posttranscriptional modulator in inflammation. Mol Cell 2005; 19: 12.

    Article  Google Scholar 

  37. Aldinucci D, Lorenzon D, Cattaruzza L, Pinto A, Gloghini A, Carbone A et al. Expression of CCR5 receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int J Cancer 2008; 122: 769–776.

    Article  CAS  Google Scholar 

  38. Skinnider BF, Mak TW . The role of cytokines in classical Hodgkin lymphoma. Blood 2002; 99: 4283–4297.

    Article  CAS  Google Scholar 

  39. Khan G . Epstein-Barr virus, cytokines, and inflammation: a cocktail for the pathogenesis of Hodgkin's lymphoma? Exp Hematol 2006; 34: 399–406.

    Article  CAS  Google Scholar 

  40. Kota SK, Balasubramanian S . Cancer therapy via modulation of micro RNA levels: a promising future. Drug Discov Today 2010; 15: 733–740.

    Article  CAS  Google Scholar 

  41. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 2010; 28: 341–347.

    Article  CAS  Google Scholar 

  42. Stein CA, Hansen JB, Lai J, Wu S, Voskresenskiy A, Hog A et al. Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 2010; 38: e3.

    Article  CAS  Google Scholar 

  43. Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S . Bioinformatics and Computational Biology Solutions Using R and Bioconductor [Book] 2005; 473.

  44. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002; 18 (Suppl 1): S96–S104.

    Article  Google Scholar 

  45. G S . Limma: linear models for microarray data. In: Gentleman RCV, Dudoit S, Irizarry R, Huber W (eds). Bioinformatics and Computational Biology, Solutions using R and Bioconductor [Chapter] 2005; 23.

    Google Scholar 

Download references

Acknowledgements

This work was supported by The Danish National Advanced Technology Foundation, The EC FP7 ONCOMIRS consortium (Grant agreement number 201102: this publication reflects only authors' views;the commission is not liable for any use that may be made of the information herein), The Novo Nordisk Foundation, The Lundbeck Foundation, The Danish Cancer Society and the Danish National Research Foundation. Dr Bellan's and Professor Leoncini's work is supported by the Monte dei Paschi di Siena Foundation. Dr Leucci is supported by a grant from the Danish Medical Research Council.

Author contributions: EL and AHL designed the overall study. SO and SK designed and provided the tiny anti-miR-LNAs. LHG performed all the bioinformatic analyses. LL and CB performed the analysis on NOG MICE. KTJ coordinated the mouse experiments; AZ and EL performed all the experiments. EL and AHL wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A H Lund.

Ethics declarations

Competing interests

Dr Obad and Professor Kauppinen are employees of Santaris Pharma. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leucci, E., Zriwil, A., Gregersen, L. et al. Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo. Oncogene 31, 5081–5089 (2012). https://doi.org/10.1038/onc.2012.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.15

Keywords

This article is cited by

Search

Quick links