Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis

Abstract

Mammalian Ste20-like kinase-1 (MST1) kinase mediates H2O2-induced cell death by anticancer drugs such as cisplatin in a p53-dependent manner. However, the mechanism underlying MST1 activation by H2O2 remains unknown. Here we show that peroxiredoxin-I (PRX-I) is an essential intermediate in H2O2-induced MST1 activation and cisplatin-induced cell death through p53. Cell stimulation with H2O2 resulted in PRX-I oxidation to form homo-oligomers and interaction with MST1, leading to MST1 autophosphorylation and augmentation of kinase activity. In addition, RNA interference knockdown experiments indicated that endogenous PRX-I is required for H2O2-induced MST1 activation. Live-cell imaging showed H2O2 generation by cisplatin treatment, which likewise caused PRX-I oligomer formation, MST1 activation and cell death. Cisplatin-induced PRX-I oligomer formation was not observed in embryonic fibroblasts obtained from p53-knockout mice, confirming the importance of p53. Indeed, ectopic expression of p53 induced PRX-I oligomer formation and cell death, both of which were cancelled by the antioxidant NAC. Moreover, we succeeded in reconstituting H2O2-induced MST1 activation in vitro, using purified PRX-I and MST1 proteins. Collectively, our results show a novel PRX-I function to cause cell death in response to high levels of oxidative stress by activating MST1, which underlies the p53-dependent cytotoxicity caused by anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ahn SH, Cheung WL, Hsu JY, Diaz RL, Smith MM, Allis CD . (2005). Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV et al. (2006). Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3: 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435: 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Colombani J, Polesello C, Josué F, Tapon N . (2006). Dmp53 activates the Hippo pathway to promote cell death in response to DNA damage. Curr Biol 16: 1453–1458.

    Article  CAS  PubMed  Google Scholar 

  • Creasy CL, Ambrose DM, Chernoff J . (1996). The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J Biol Chem 271: 21049–21053.

    Article  CAS  PubMed  Google Scholar 

  • de Souza PM, Lindsay MA . (2004). Mammalian Sterile20-like kinase 1 and the regulation of apoptosis. Biochem Soc Trans 32: 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Egler RA, Fernandes E, Rothermund K, Sereika S, de Souza-Pinto N, Jaruga P et al. (2005). Regulation of reactive oxygen species, DNA damage, and c-Myc function by peroxiredoxin 1. Oncogene 24: 8038–8050.

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ . (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Graves JA, Metukuri M, Scott D, Rothermund K, Prochownik EV . (2009). Regulation of reactive oxygen species homeostasis by peroxiredoxins and c-Myc. J Biol Chem 284: 6520–6529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ . (1996). Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271: 4138–4142.

    Article  CAS  PubMed  Google Scholar 

  • Harvey K, Tapon N . (2007). The Salvador–Warts–Hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer 7: 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Iwamura T, Yoneyama M, Yamaguchi K, Suhara W, Mori W, Shiota K et al. (2001). Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6: 375–388.

    Article  CAS  PubMed  Google Scholar 

  • Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T . (1996). Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848–11852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karin M, Hunter T . (1995). Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5: 747–757.

    Article  CAS  PubMed  Google Scholar 

  • König J, Baier M, Horling F, Kahmann U, Harris G, Schürmann P et al. (2002). The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci USA 99: 5738–5743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH et al. (2007). Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem 282: 22011–22022.

    Article  CAS  PubMed  Google Scholar 

  • Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villén J, Becker EB et al. (2006). A conserved MST–FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125: 987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Li PF, Dietz R, von Harsdorf R . (1999). p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18: 6027–6036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE et al. (1994). p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE . (1993). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  • Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR et al. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280: 28775–28784.

    Article  CAS  PubMed  Google Scholar 

  • Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL et al. (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424: 561–565.

    Article  CAS  PubMed  Google Scholar 

  • O'Neill EE, Matallanas D, Kolch W . (2005). Mammalian sterile 20-like kinases in tumor suppression: an emerging pathway. Cancer Res 65: 5485–5487.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . (1997). A model for p53-induced apoptosis. Nature 389: 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J . (2004). Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 381: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praskova M, Xia F, Avruch J . (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18: 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren A, Yan G, You B, Sun J . (2008). Downregulation of mammalian sterile 20-like kinase 1 by heat shock protein 70 mediates cisplatin resistance in prostate cancer cells. Cancer Res 68: 2266–2274.

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Chae HZ, Kim K . (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38: 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG . (2006). Cell signaling. H2O2, a necessary evil for cell signaling. Science 312: 1882–1883.

    Article  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P . (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8: 579–591.

    Article  CAS  PubMed  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H et al. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10: 241–252.

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T et al. (1993). Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8: 3313–3322.

    CAS  PubMed  Google Scholar 

  • Veal EA, Day AM, Morgan BA . (2007). Hydrogen peroxide sensing and signaling. Mol Cell 26: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J et al. (2004). A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 15: 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Wood ZA, Schröder E, Robin Harris J, Poole LB . (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28: 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Q, Hong W . (2008). The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13: 188–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Yoshiaki Kise (Flanders Institute for Biotechnology, Belgium) for technical assistance in preparing the expression constructs. This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and Technology (MEXT)-Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Miki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morinaka, A., Funato, Y., Uesugi, K. et al. Oligomeric peroxiredoxin-I is an essential intermediate for p53 to activate MST1 kinase and apoptosis. Oncogene 30, 4208–4218 (2011). https://doi.org/10.1038/onc.2011.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.139

Keywords

This article is cited by

Search

Quick links