Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

hSSB1 binds and protects p21 from ubiquitin-mediated degradation and positively correlates with p21 in human hepatocellular carcinomas

Abstract

Downregulation of hSSB1, a single-stranded DNA-binding protein, causes increased radiosensitivity, defective checkpoint activation and genomic instability. However, the mechanisms of hSSB1 function in these responses remain to be uncovered. Here, we present evidence that hSSB1 directly binds p21 and this interaction may prevent p21 from ubiquitin-mediated degradation. Furthermore, both promotion of the G1/S transition and abrogation of the G2/M checkpoints induced by hSSB1 knockdown are partially dependent on p21. Most importantly, hSSB1 and p21 levels are positively correlated in human hepatocellular carcinomas (HCC), as determined by immunostaining. Therefore, hSSB1 may positively modulate p21 to regulate cell cycle progression and DNA damage response, implicating hSSB1 as a novel, promising therapeutic target for cancers such as HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abbas T, Dutta A . (2009). p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9: 400–414.

    Article  CAS  Google Scholar 

  • Blagosklonny MV, Wu GS, Omura S, el-Deiry WS . (1996). Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 227: 564–569.

    Article  CAS  Google Scholar 

  • Brustmann H . (2005). Immunohistochemical detection of human telomerase reverse transcriptase (hTERT) and c-kit in serous ovarian carcinoma: a clinicopathologic study. Gynecol Oncol 98: 396–402.

    Article  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  Google Scholar 

  • Chen MS, Ryan CE, Piwnica-Worms H . (2003). Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23: 7488–7497.

    Article  CAS  Google Scholar 

  • Child ES, Mann DJ . (2006). The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell Cycle 5: 1313–1319.

    Article  CAS  Google Scholar 

  • Dotto GP . (2000). p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 1471: M43–M56.

    CAS  PubMed  Google Scholar 

  • Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW et al. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023.

    Article  CAS  Google Scholar 

  • el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J et al. (1994). WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174.

    CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  Google Scholar 

  • Ferguson AM, White LS, Donovan PJ, Piwnica-Worms H . (2005). Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol Cell Biol 25: 2853–2860.

    Article  CAS  Google Scholar 

  • Fukuchi K, Maruyama H, Takagi Y, Gomi K . (1999). Direct proteasome inhibition by clasto-lactacystin beta-lactone permits the detection of ubiquitinated p21(waf1) in ML-1 cells. Biochim Biophys Acta 1451: 206–210.

    Article  CAS  Google Scholar 

  • Gartel AL . (2006). Is p21 an oncogene? Mol Cancer Ther 5: 1385–1386.

    Article  CAS  Google Scholar 

  • Gartel AL, Tyner AL . (2002). The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1: 639–649.

    CAS  Google Scholar 

  • Huang J, Gong Z, Ghosal G, Chen J . (2009). SOSS complexes participate in the maintenance of genomic stability. Mol Cell 35: 384–393.

    Article  CAS  Google Scholar 

  • Inagaki Y, Yasui K, Endo M, Nakajima T, Zen K, Tsuji K et al. (2008). CREB3L4, INTS3, and SNAPAP are targets for the 1q21 amplicon frequently detected in hepatocellular carcinoma. Cancer Genet Cytogenet 180: 30–36.

    Article  CAS  Google Scholar 

  • Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al. (2008). MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 28: 2167–2174.

    Article  CAS  Google Scholar 

  • Jascur T, Brickner H, Salles-Passador I, Barbier V, El Khissiin A, Smith B et al. (2005). Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding TPR protein. Mol Cell 17: 237–249.

    Article  CAS  Google Scholar 

  • Jin Y, Lee H, Zeng SX, Dai MS, Lu H . (2003). MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J 22: 6365–6377.

    Article  CAS  Google Scholar 

  • Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC et al. (2008). GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 13: 36–47.

    Article  CAS  Google Scholar 

  • Kao JT, Chuah SK, Huang CC, Chen CL, Wang CC, Hung CH et al. (2007). P21/WAF1 is an independent survival prognostic factor for patients with hepatocellular carcinoma after resection. Liver Int 27: 772–781.

    Article  Google Scholar 

  • Lee S, Helfman DM . (2004). Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 279: 1885–1891.

    Article  CAS  Google Scholar 

  • Lee YH, Oh BK, Yoo JE, Yoon SM, Choi J, Kim KS et al. (2009). Chromosomal instability, telomere shortening, and inactivation of p21(WAF1/CIP1) in dysplastic nodules of hepatitis B virus-associated multistep hepatocarcinogenesis. Mod Pathol 22: 1121–1131.

    Article  CAS  Google Scholar 

  • Li R, Waga S, Hannon GJ, Beach D, Stillman B . (1994). Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371: 534–537.

    Article  CAS  Google Scholar 

  • Li XS, Rishi AK, Shao ZM, Dawson MI, Jong L, Shroot B et al. (1996). Posttranscriptional regulation of p21WAF1/CIP1 expression in human breast carcinoma cells. Cancer Res 56: 5055–5062.

    CAS  PubMed  Google Scholar 

  • Li Y, Bolderson E, Kumar R, Muniandy PA, Xue Y, Richard DJ et al. (2009). HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J Biol Chem 284: 23525–23531.

    Article  CAS  Google Scholar 

  • Liu S, Bishop WR, Liu M . (2003). Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist Updat 6: 183–195.

    Article  CAS  Google Scholar 

  • Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K et al. (1995). p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9: 935–944.

    Article  CAS  Google Scholar 

  • Maki CG, Howley PM . (1997). Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol Cell Biol 17: 355–363.

    Article  CAS  Google Scholar 

  • Michieli P, Chedid M, Lin D, Pierce JH, Mercer WE, Givol D . (1994). Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391–3395.

    CAS  PubMed  Google Scholar 

  • Miyazaki M, Sakaguchi M, Akiyama I, Sakaguchi Y, Nagamori S, Huh NH . (2004). Involvement of interferon regulatory factor 1 and S100C/A11 in growth inhibition by transforming growth factor beta 1 in human hepatocellular carcinoma cells. Cancer Res 64: 4155–4161.

    Article  CAS  Google Scholar 

  • Moustakas A, Kardassis D . (1998). Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc Natl Acad Sci USA 95: 6733–6738.

    Article  CAS  Google Scholar 

  • O'Reilly MA . (2005). Redox activation of p21Cip1/WAF1/Sdi1: a multifunctional regulator of cell survival and death. Antioxid Redox Signal 7: 108–118.

    Article  CAS  Google Scholar 

  • Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A et al. (1995). p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024–1027.

    Article  CAS  Google Scholar 

  • Qin LF, Ng IO, Fan ST, Ng M . (1998). p21/WAF1, p53 and PCNA expression and p53 mutation status in hepatocellular carcinoma. Int J Cancer 79: 424–428.

    Article  CAS  Google Scholar 

  • Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG et al. (2008). Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453: 677–681.

    Article  CAS  Google Scholar 

  • Schoniger-Hekele M, Hanel S, Wrba F, Muller C . (2005). Hepatocellular carcinoma--survival and clinical characteristics in relation to various histologic molecular markers in Western patients. Liver Int 25: 62–69.

    Article  Google Scholar 

  • Sheikh MS, Li XS, Chen JC, Shao ZM, Ordonez JV, Fontana JA . (1994). Mechanisms of regulation of WAF1/Cip1 gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene 9: 3407–3415.

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  Google Scholar 

  • Shiohara M, Akashi M, Gombart AF, Yang R, Koeffler HP . (1996). Tumor necrosis factor alpha: posttranscriptional stabilization of WAF1 mRNA in p53-deficient human leukemic cells. J Cell Physiol 166: 568–576.

    Article  CAS  Google Scholar 

  • Shiraki K, Wagayama H . (2006). Cytoplasmic p21(WAF1/CIP1) expression in human hepatocellular carcinomas. Liver Int 26: 1018–1019.

    Article  CAS  Google Scholar 

  • Skaar JR, Richard DJ, Saraf A, Toschi A, Bolderson E, Florens L et al. (2009). INTS3 controls the hSSB1-mediated DNA damage response. J Cell Biol 187: 25–32.

    Article  CAS  Google Scholar 

  • Tanaka H, Yamashita T, Asada M, Mizutani S, Yoshikawa H, Tohyama M . (2002). Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol 158: 321–329.

    Article  CAS  Google Scholar 

  • Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, Allday MJ . (2001). A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J 20: 2367–2375.

    Article  CAS  Google Scholar 

  • Xiao J, Zhang Z, Chen GG, Zhang M, Ding Y, Fu J et al. (2009). Nucleophosmin/B23 interacts with p21WAF1/CIP1 and contributes to its stability. Cell Cycle 8: 889–895.

    Article  CAS  Google Scholar 

  • Xu SB, Liu XH, Li BH, Zhang Y, Yuan J, Yuan Q et al. (2009). DNA methylation regulates constitutive expression of Stat6 regulatory genes SOCS-1 and SHP-1 in colon cancer cells. J Cancer Res Clin Oncol 135: 1791–1798.

    Article  CAS  Google Scholar 

  • Zhang F, Wu J, Yu X . (2009). Integrator3, a partner of single-stranded DNA-binding protein 1, participates in the DNA damage response. J Biol Chem 284: 30408–30415.

    Article  CAS  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC . (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3: 245–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the laboratory for their helpful comments on the manuscript. This work was supported by grants from NSFC (30772492 and 30973506 to J-PY, U0732005 to Y-XZ, and 30930045 to TK), from the 863 project (2006AA02A404 to Y-XZ), and from the 973 project (2010CB912201 to TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Feng, Z., Zhang, M. et al. hSSB1 binds and protects p21 from ubiquitin-mediated degradation and positively correlates with p21 in human hepatocellular carcinomas. Oncogene 30, 2219–2229 (2011). https://doi.org/10.1038/onc.2010.596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.596

Keywords

This article is cited by

Search

Quick links