Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase

Abstract

The progression and negative outcome of a variety of human carcinomas are intimately associated with aberrant activity of the c-Met oncogene. The underlying cause of this dysregulation, however, remains a subject of discussion, as the majority of cancer patients do not present with activating mutations in c-Met receptor itself. In this study, we show that the oncogenic protease matriptase is ubiquitously co-expressed with the c-Met in human squamous cell carcinomas and amplifies migratory and proliferative responses of primary epithelial cells to the cognate ligand for c-Met, pro-hepatocyte growth factor/scatter factor (proHGF/SF), through c-Met and Gab1 signaling. Furthermore, the selective genetic ablation of c-Met from matriptase-expressing keratinocytes completely negates the oncogenic potential of matriptase. In addition, matriptase-dependent carcinoma formation could be blocked by the pharmacological inhibition of the Akt–mammalian target of Rapamycin (mTor) pathway. Our data identify matriptase as an initiator of c-Met-Akt–mTor-dependent signaling axis in tumors and reveal mTor activation as an essential component of matriptase/c-Met-induced carcinogenesis. The study provides a specific example of how epithelial transformation can be promoted by epigenetic acquisition of the capacity to convert a widely available paracrine growth factor precursor to its signaling competent state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA et al. (2005). Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res 65: 9953–9961.

    Article  CAS  Google Scholar 

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925.

    Article  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C . (1995). Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376: 768–771.

    Article  CAS  Google Scholar 

  • Bugge TH, Flick MJ, Daugherty CC, Degen JL . (1995). Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 9: 794–807.

    Article  CAS  Google Scholar 

  • Camerer E, Barker A, Duong DN, Ganesan R, Kataoka H, Cornelissen I et al. (2010). Local protease signaling contributes to neural tube closure in the mouse embryo. Dev Cell 18: 25–38.

    Article  CAS  Google Scholar 

  • Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R et al. (1994). Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368: 419–424.

    Article  CAS  Google Scholar 

  • Chmielowiec J, Borowiak M, Morkel M, Stradal T, Munz B, Werner S et al. (2007). c-Met is essential for wound healing in the skin. J Cell Biol 177: 151–162.

    Article  CAS  Google Scholar 

  • Dai C, Saleem MA, Holzman LB, Mathieson P, Liu Y . (2010). Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int 77: 962–973.

    Article  CAS  Google Scholar 

  • Gailani D, Lasky NM, Broze Jr GJ . (1997). A murine model of factor XI deficiency. Blood Coagul Fibrinolysis 8: 134–144.

    Article  CAS  Google Scholar 

  • Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt LG et al. (2006). Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci USA 103: 4046–4051.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hartmann G, Prospero T, Brinkmann V, Ozcelik C, Winter G, Hepple J et al. (1998). Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr Biol 8: 125–134.

    Article  CAS  Google Scholar 

  • Herter S, Piper DE, Aaron W, Gabriele T, Cutler G, Cao P et al. (2005). Hepatocyte growth factor is a preferred in vitro substrate for human Hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J 390: 125–136.

    Article  CAS  Google Scholar 

  • Huh CG, Factor VM, Sanchez A, Uchida K, Conner EA, Thorgeirsson SS . (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci USA 101: 4477–4482.

    Article  CAS  Google Scholar 

  • Itoh H, Naganuma S, Takeda N, Miyata S, Uchinokura S, Fukushima T et al. (2004). Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice. Gastroenterology 127: 1423–1435.

    Article  CAS  Google Scholar 

  • Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY et al. (2006). Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 97: 1327–1334.

    Article  CAS  Google Scholar 

  • Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB et al. (2003). Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63: 1101–1105.

    CAS  Google Scholar 

  • Kirchhofer D, Lipari MT, Santell L, Billeci KL, Maun HR, Sandoval WN et al. (2007). Utilizing the activation mechanism of serine proteases to engineer hepatocyte growth factor into a Met antagonist. Proc Natl Acad Sci USA 104: 5306–5311.

    Article  CAS  Google Scholar 

  • Knudsen BS, Vande Woude G . (2008). Showering c-MET-dependent cancers with drugs. Curr Opin Genet Dev 18: 87–96.

    Article  CAS  Google Scholar 

  • Lee SL, Dickson RB, Lin CY . (2000). Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275: 36720–36725.

    Article  CAS  Google Scholar 

  • Lichti U, Weinberg WC, Goodman L, Ledbetter S, Dooley T, Morgan D et al. (1993). in vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice. J Invest Dermatol 101: 124S–129S.

    Article  CAS  Google Scholar 

  • List K, Bugge TH, Szabo R . (2006a). Matriptase: potent proteolysis on the cell surface. Mol Med 12: 1–7.

    Article  CAS  Google Scholar 

  • List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W et al. (2002). Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21: 3765–3779.

    Article  CAS  Google Scholar 

  • List K, Szabo R, Molinolo A, Nielsen BS, Bugge TH . (2006b). Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168: 1513–1525.

    Article  CAS  Google Scholar 

  • List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T et al. (2005). Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19: 1934–1950.

    Article  CAS  Google Scholar 

  • Lopez-Otin C, Hunter T . (2010). The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 10: 278–292.

    Article  CAS  Google Scholar 

  • Ma H, Saenko M, Opuko A, Togawa A, Soda K, Marlier A et al. (2009). Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction. Kidney Int 76: 868–876.

    Article  CAS  Google Scholar 

  • McCawley LJ, Crawford HC, King Jr LE, Mudgett J, Matrisian LM . (2004). A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64: 6965–6972.

    Article  CAS  Google Scholar 

  • Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, Patel V, Gutkind JS . (2009). Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 45: 324–334.

    Article  CAS  Google Scholar 

  • Molinolo AA, Hewitt SM, Amornphimoltham P, Keelawat S, Rangdaeng S, Meneses Garcia A et al. (2007). Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Cancer Res 13: 4964–4973.

    Article  CAS  Google Scholar 

  • Naldini L, Tamagnone L, Vigna E, Sachs M, Hartmann G, Birchmeier W et al. (1992). Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J 11: 4825–4833.

    Article  CAS  Google Scholar 

  • Owen KA, Qiu D, Alves J, Schumacher AM, Kilpatrick LM, Li J et al. (2010). Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem J 426: 219–228.

    Article  CAS  Google Scholar 

  • Park M, Dean M, Cooper CS, Schmidt M, O'Brien SJ, Blair DG et al. (1986). Mechanism of met oncogene activation. Cell 45: 895–904.

    Article  CAS  Google Scholar 

  • Pauer HU, Renne T, Hemmerlein B, Legler T, Fritzlar S, Adham I et al. (2004). Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo. Thromb Haemost 92: 503–508.

    Article  CAS  Google Scholar 

  • Peek M, Moran P, Mendoza N, Wickramasinghe D, Kirchhofer D . (2002). Unusual proteolytic activation of pro-hepatocyte growth factor by plasma kallikrein and coagulation factor XIa. J Biol Chem 277: 47804–47809.

    Article  CAS  Google Scholar 

  • Raimondi AR, Molinolo A, Gutkind JS . (2009). Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res 69: 4159–4166.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  Google Scholar 

  • Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M et al. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373: 699–702.

    Article  CAS  Google Scholar 

  • Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M et al. (2009). The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res 69: 3021–3031.

    Article  CAS  Google Scholar 

  • Shanmukhappa K, Matte U, Degen JL, Bezerra JA . (2009). Plasmin-mediated proteolysis is required for hepatocyte growth factor activation during liver repair. J Biol Chem 284: 12917–12923.

    Article  CAS  Google Scholar 

  • Shimomura T, Miyazawa K, Komiyama Y, Hiraoka H, Naka D, Morimoto Y et al. (1995). Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor XIIa and hepatocyte growth factor activator. Eur J Biochem 229: 257–261.

    Article  CAS  Google Scholar 

  • Squarize CH, Castilho RM, Gutkind JS . (2008). Chemoprevention and treatment of experimental Cowden′s disease by mTOR inhibition with rapamycin. Cancer Res 68: 7066–7072.

    Article  CAS  Google Scholar 

  • Szabo R, Bugge TH . (2008). Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40: 1297–1316.

    Article  CAS  Google Scholar 

  • Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS . (2000). Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275: 26333–26342.

    Article  CAS  Google Scholar 

  • Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T et al. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373: 702–705.

    Article  CAS  Google Scholar 

  • Uhland K . (2006). Matriptase and its putative role in cancer. Cell Mol Life Sci 63: 2968–2978.

    Article  CAS  Google Scholar 

  • Vivanco I, Sawyers CL . (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489–501.

    Article  CAS  Google Scholar 

  • Williams-Simons L, Westphal H . (1999). EIIaCre—utility of a general deleter strain. Transgenic Res 8: 53–54.

    Article  CAS  Google Scholar 

  • Wu Q, Yu D, Post J, Halks-Miller M, Sadler JE, Morser J . (1998). Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease. J Clin Invest 101: 321–326.

    Article  CAS  Google Scholar 

  • Zhou HM, Nichols A, Meda P, Vassalli JD . (2000). Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. Embo J 19: 4817–4826.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Snorri Thorgeirsson for floxed Hgfr mice. Supported by NIDCR Intramural Research Program. We thank Dr Mary Jo Danton for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T H Bugge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabo, R., Rasmussen, A., Moyer, A. et al. c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 30, 2003–2016 (2011). https://doi.org/10.1038/onc.2010.586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.586

Keywords

This article is cited by

Search

Quick links