Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation

Abstract

The neurofibromatosis type 2 (NF2) tumor suppressor gene encodes merlin, a membrane/cytoskeleton protein necessary for the maintenance of contact inhibition of growth in cells. Bi-allelic inactivation of NF2 is known to cause multiple cancers in both humans and mice. However, the mechanism through which merlin exerts its tumor-suppressive function remains obscure. In this report, we show that NF2 knockout mouse embryonic fibroblasts lost contact inhibition of cell proliferation and contained significantly increased canonical Wnt signaling. Inhibition of Rac1, the activity of which is inversely regulated by NF2, through the use of a dominant-negative mutant, small hairpin RNA or a small molecule inhibitor in NF2-deficient cells, was able to suppress elevated Wnt signals as shown by reduced activity of the T-cell factor 4 (TCF4) transcription factor. Dominant-negative TCF4 or Rac1 mutant, as well as a small molecule inhibition of Wnt, were able to curb NF2 deficiency-elicited cell proliferation at the confluent state. Thus, Rac1-mediated canonical Wnt signaling is essential for the loss of contact inhibition in NF2-deficient cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aberle H, Schwartz H, Hoschuetzky H, Kemler R . (1996). Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 271: 1520–1526.

    Article  CAS  Google Scholar 

  • Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO . (2008). Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 68: 5236–5245.

    Article  CAS  Google Scholar 

  • Bosco EE, Mayhew CN, Hennigan RF, Sage J, Jacks T, Knudsen ES . (2004). RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult. Nucleic Acids Res 32: 25–34.

    Article  CAS  Google Scholar 

  • Brembeck FH, Schwarz-Romond T, Bakkers J, Wilhelm S, Hammerschmidt M, Birchmeier W . (2004). Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions. Genes Dev 18: 2225–2230.

    Article  CAS  Google Scholar 

  • Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z et al. (2006). Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 103: 4463–4468.

    Article  CAS  Google Scholar 

  • Colomba A, Courilleau D, Ramel D, Billadeau DD, Espinos E, Delsol G et al. (2008). Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas. Oncogene 27: 2728–2736.

    Article  CAS  Google Scholar 

  • Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI . (2007). Contact-dependent inhibition of EGFR signaling by NF2/merlin. J Cell Biol 177: 893–903.

    Article  CAS  Google Scholar 

  • Esufali S, Bapat B . (2004). Cross-talk between Rac1 GTPase and dysregulated Wnt signaling pathway leads to cellular redistribution of beta-catenin and TCF/LEF-mediated transcriptional activation. Oncogene 23: 8260–8271.

    Article  CAS  Google Scholar 

  • Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E et al. (2002). Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31: 354–362.

    Article  CAS  Google Scholar 

  • Fritz G, Just I, Kaina B . (1999). Rho GTPases are over-expressed in human tumors. Int J Cancer 81: 682–687.

    Article  CAS  Google Scholar 

  • Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M, Abramowski V, Goutebroze L et al. (2000). Conditional biallelic NF2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14: 1617–1630.

    CAS  Google Scholar 

  • Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M . (1999). Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesion and spreading. Hum Mol Genet 8: 267–275.

    Article  CAS  Google Scholar 

  • Johnson KC, Kissil JL, Fry JL, Jacks T . (2002). Cellular transformation by a FERM domain mutant of the NF2 tumor suppressor gene. Oncogene 21: 5990–5997.

    Article  CAS  Google Scholar 

  • Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E . (1999). Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18: 6835–6839.

    Article  CAS  Google Scholar 

  • Kaempchen K, Mielke K, Utermark T, Langmesser S, Hanemann CO . (2003). Upregulation of the Rac1/JNK signaling pathway in primary human schwannoma cells. Hum Mol Genet 12: 1211–1221.

    Article  CAS  Google Scholar 

  • Kissil JL, Johnson KC, Eckman MS, Jacks T . (2002). Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277: 10394–10399.

    Article  CAS  Google Scholar 

  • Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI . (2003). NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17: 1090–1100.

    Article  CAS  Google Scholar 

  • Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q . (2008). Merlin is a potent inhibitor of glioma growth. Cancer Res 68: 5733–5742.

    Article  CAS  Google Scholar 

  • Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5: 91–102.

    Article  CAS  Google Scholar 

  • Lyons LS, Burnstein KL . (2006). Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity. Mol Endocrinol 20: 1061–1072.

    Article  CAS  Google Scholar 

  • Malliri A, Collard JG . (2003). Role of Rho-family proteins in cell adhesion and cancer. Curr Opin Cell Biol 15: 583–589.

    Article  CAS  Google Scholar 

  • McClatchey AI, Giovannini M . (2005). Membrane organization and tumorigenesis—the NF2 tumor suppressor, merlin. Genes Dev 19: 2265–2277.

    Article  CAS  Google Scholar 

  • Minke KS, Staib P, Puetter A, Gehrke I, Gandhirajan RK, Schlosser A et al. (2009). Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur J Haematol 82: 165–175.

    Article  CAS  Google Scholar 

  • Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA et al. (2001). The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15: 968–980.

    Article  CAS  Google Scholar 

  • Nakai Y, Zheng Y, MacCollin M, Ratner N . (2006). Temporal control of Rac in Schwann cell-axon interaction is disrupted in NF2-mutant schwannoma cells. J Neurosci 26: 3390–3395.

    Article  CAS  Google Scholar 

  • Okada T, Lopez-Lago M, Giancotti FG . (2005). Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171: 361–371.

    Article  CAS  Google Scholar 

  • Sahai E, Marshall CJ . (2002). RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142.

    Article  Google Scholar 

  • Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W . (2006). Crystal structure of a beta-catenin/BCL9/Tcf4 complex. Mol Cell 24: 293–300.

    Article  CAS  Google Scholar 

  • Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I et al. (2001). The NF2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1: 63–72.

    Article  CAS  Google Scholar 

  • Tang X, Jang SW, Wang X, Liu Z, Bahr SM, Sun SY et al. (2007). Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nat Cell Biol 9: 1199–1207.

    Article  CAS  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  Google Scholar 

  • Upadhyay G, Goessling W, North TE, Xavier R, Zon LI, Yajnik V . (2008). Molecular association between beta-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/beta-catenin signaling. Oncogene 27: 5845–5855.

    Article  CAS  Google Scholar 

  • van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H . (2002). Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277: 17901–17905.

    Article  CAS  Google Scholar 

  • Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F . (2008). Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell 133: 340–353.

    Article  CAS  Google Scholar 

  • Xiao GH, Beeser A, Chernoff J, Testa JR . (2002). p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277: 883–886.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Zheng laboratory for thought-provoking discussions. This study was supported by NIH R01 CA125658 (YZ), NIH R01 CA118032 (NR) and NIH T32 CA117846 (EEB). EEB and YN performed experiments, analyzed results and made the figures; RFH provided key reagents, NR collaborated on experimental design, EEB and YZ designed the research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosco, E., Nakai, Y., Hennigan, R. et al. NF2-deficient cells depend on the Rac1-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation. Oncogene 29, 2540–2549 (2010). https://doi.org/10.1038/onc.2010.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.20

Keywords

This article is cited by

Search

Quick links