Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Subcellular localization of apurinic endonuclease 1 promotes lung tumor aggressiveness via NF-κB activation

Abstract

Apurinic endonuclease 1 (Ape1) is not only involved in base excision repair, but also activates some transcriptional factors through its redox activity. However, which subcellular localization of Ape1 is involved in the activation of transcriptional factor remains unclear. We first observed that Cox-2 expression was associated with cytoplasmic Ape1 expression in lung tumors and cancer cell lines. We thus hypothesize that nuclear factor (NF)-κB is activated by cytoplasmic Ape1 to cause Cox-2 expression. Herein, we generated cytoplasmic and nuclear Ape1 in Ape1-knockdown lung cancer cells by exogenous expression of Ape1 containing various deletions and/or mutations of the nuclear localization sequence. It was observed that cytoplasmic Ape1, but not nuclear Ape1, induced Cox-2 expression through NF-κB activation. NF-κB activation by cytoplasmic Ape1 was diminished by the Ape1 redox activity inhibitor resveratrol. Cells expressing cytoplasmic Ape1 exhibited tumor progression and metastasis in vitro and in vivo as xenografts, but cells expressing nuclear Ape1 did not. Patients with tumors containing elevated cytoplasmic Ape1 had a poor prognosis and a 3.722-fold risk of tumor recurrence and/or metastasis. Cytoplasmic Ape1 could therefore enhance lung tumor malignancy through NF-κB activation, suggesting that combination of cisplatin and specific redox inhibitor could improve chemotherapeutic response in patients with tumors containing elevated cytoplasmic Ape1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aggarwal BB . (2004). Nuclear factor-kappaB: the enemy within. Cancer Cell 6: 203–208.

    Article  CAS  PubMed Central  Google Scholar 

  • Ando K, Hirao S, Kabe Y, Ogura Y, Sato I, Yamaguchi Y et al. (2008). A new APE1/Ref-1-dependent pathway leading to reduction of NF-kappaB and AP-1, and activation of their DNA-binding activity. Nucl Acids Res 36: 4327–4336.

    Article  CAS  Google Scholar 

  • Angkeow P, Deshpande SS, Qi B, Liu YX, Park YC, Jeon BH et al. (2002). Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ 9: 717–725.

    Article  CAS  Google Scholar 

  • Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR et al. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 224: 274–283.

    Article  CAS  PubMed Central  Google Scholar 

  • Bapat A, Fishel ML, Kelley MR . (2008). Going Ape1 as approach to cancer therapy. Antoxid Redox Signal 11: 651–668.

    Article  Google Scholar 

  • Bhakat KK, Mantha AK, Mitra S . (2009). Transcriptional regulatory functions of mammalian AP-endonuclease (APE/Ref-1), an essential multifunctional protein. Antioxid Redox Signal 11: 1–19.

    Article  Google Scholar 

  • Busso CS, Iwakuma T, Izumi T . (2009). Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene 28: 1616–1625.

    Article  CAS  PubMed Central  Google Scholar 

  • Chen G, Bhojani MS, Heaford AC, Chang DC, Laxman B, Thomas DG et al. (2005). Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA 102: 12507–12512.

    Article  CAS  Google Scholar 

  • Cheng YW, Wu MF, Wang J, Yeh KT, Goan YG, Chiou HL et al. (2004). Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res 67: 10686–10693.

    Article  Google Scholar 

  • Delhase M, Hayakawa M, Chen Y, Karin M . (1999). Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284: 309–313.

    Article  CAS  Google Scholar 

  • Dey A, Tergaonkar V, Lane DP . (2008). Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov 7: 1031–1040.

    Article  CAS  Google Scholar 

  • Di Maso V, Avellini C, Croce LS, Rosso N, Quadrifoglio F, Cesaratto L et al. (2007). Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance. Mol Med 13: 89–96.

    Article  CAS  PubMed Central  Google Scholar 

  • Fantini D, Vascotto C, Deganuto M, Bivi N, Gustincich S, Marcon G et al. (2008). APE1/Ref-1 regulates PTEN expression mediated by Egr-1. Free Radic Res 42: 20–29.

    Article  CAS  PubMed Central  Google Scholar 

  • Freitas S, Moore DH, Michael H, Kelley MR . (2003). Studies of apurinic/apyrimidinic endonuclease/ref-1 expression in epithelial ovarian cancer: correlations with tumor progression and platinum resistance. Clin Cancer Res 9: 4689–4694.

    CAS  PubMed  Google Scholar 

  • Gaiddon C, Moorthy NC, Prives C . (1999). Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J 18: 5609–5621.

    Article  CAS  PubMed Central  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn HF . (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271: 32253–32259.

    Article  CAS  Google Scholar 

  • Jackson EB, Theriot CA, Chattopadhyay R, Mitra S, Izumi T . (2005). Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1). Nucleic Acids Res 33: 3303–3312.

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang Y, Cui L, Yie TA, Rom WN, Cheng H, Tchou-Wong KM . (2001). Inhibition of anchorage-independent growth and lung metastasis of A549 lung carcinoma cells by IkappaBbeta. Oncogene 20: 2254–2263.

    Article  CAS  Google Scholar 

  • Kakolyris S, Giatromanolaki A, Koukourakis M, Kaklamanis L, Kanavaros P, Hickson ID et al. (1999). Nuclear localization of human AP endonuclease 1 (HAP1/Ref-1) associates with prognosis in early operable non-small cell lung cancer (NSCLC). J Pathol 189: 351–357.

    Article  CAS  Google Scholar 

  • Kakolyris S, Kaklamanis L, Giatromanolaki A, Koukourakis M, Hickson ID, Barzilay G et al. (1998). Expression and subcellular localization of human AP endonuclease 1 (HAP1/Ref-1) protein: a basis for its role in human disease. Histopathology 33: 561–569.

    Article  CAS  Google Scholar 

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    Article  CAS  PubMed Central  Google Scholar 

  • Kelly JW . (2000). Mechanisms of amyloidogenesis. Nat Struct Biol 7: 824–826.

    Article  CAS  Google Scholar 

  • Liu J, Zhan M, Hannay JA, Das P, Bolshakov SV, Kotilingam D et al. (2006). Wild-type p53 inhibits nuclear factor-kappaB-induced matrix metalloproteinase-9 promoter activation: implications for soft tissue sarcoma growth and metastasis. Mol Cancer Res 4: 803–810.

    Article  CAS  Google Scholar 

  • Maeda S, Omata M . (2008). Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci 99: 836–842.

    Article  CAS  Google Scholar 

  • Moore DH, Michael H, Tritt R, Parsons SH, Kelley MR . (2000). Alterations in the expression of the DNA repair/redox enzyme APE/ref-1 in epithelial ovarian cancers. Clin Cancer Res 6: 602–609.

    CAS  PubMed  Google Scholar 

  • Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M et al. (2002). Spatial redox regulation of a critical cysteine residue of NF-kappa B in vivo. J Biol Chem 277: 44548–44556.

    Article  CAS  Google Scholar 

  • Pines A, Perrone L, Bivi N, Romanello M, Damante G, Gulisano M et al. (2005). Activation of APE1/Ref-1 is dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP. Nucleic Acids Res 33: 4379–4394.

    Article  CAS  PubMed Central  Google Scholar 

  • Puglisi F, Aprile G, Minisini AM, Barbone F, Cataldi P, Tell G et al. (2001). Prognostic significance of Ape1/ref-1 subcellular localization in non-small cell lung carcinomas. Anticancer Res 21: 4041–4049.

    CAS  PubMed  Google Scholar 

  • Puglisi F, Barbone F, Tell G, Aprile G, Pertoldi B, Raiti C et al. (2002). Prognostic role of Ape/Ref-1 subcellular expression in stage I-III breast carcinomas. Oncol Rep 9: 11–17.

    CAS  PubMed  Google Scholar 

  • Qu J, Liu GH, Huang B, Chen C . (2007). Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of cysteines 93 and 310. Nucleic Acids Res 35: 2522–2532.

    Article  CAS  PubMed Central  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM . (2005). The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306–1313.

    Article  CAS  PubMed Central  Google Scholar 

  • Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M et al. (2000). High-performance affinity beads for identifying drug receptors. Nat Biotechnol 18: 877–881.

    Article  CAS  Google Scholar 

  • Stathopoulos GT, Sherrill TP, Cheng DS, Scoggins RM, Han W, Polosukhin VV et al. (2007). Epithelial NF-kappaB activation promotes urethane-induced lung carcinogenesis. Proc Natl Acad Sci USA 104: 18514–18519.

    Article  CAS  Google Scholar 

  • Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS et al. (2008). Host nuclear factor-kappaB activation potentiates lung cancer metastasis. Mol Cancer Res 6: 364–371.

    Article  CAS  Google Scholar 

  • Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S. . (1995). Ikappa B-beta regulates the persistent response in a biphasic activation of NF-kappa B. Cell 80: 573–582.

    Article  CAS  Google Scholar 

  • Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee JJ et al. (2006). Nuclear factor-kappaB (NF-kappaB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 107: 2637–2646.

    Article  CAS  PubMed Central  Google Scholar 

  • Tell G, Damante G, Caldwell D, Kelly MR . (2009). The intracellular localization of APE/Ref-1: more than a passive phenomenon. Antioxid Redox Signal 11: 1–19.

    Article  Google Scholar 

  • Tell G, Quadrifoglio F, Tiribelli C, Kelly MR . (2009). The many functions of APE/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11: 1–19.

    Article  Google Scholar 

  • Van Waes C . (2007). Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13: 1076–1082.

    Article  CAS  Google Scholar 

  • Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R et al. (2007). Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67: 2396–2401.

    Article  CAS  Google Scholar 

  • Wu C, Ghosh S . (2003). Differential phosphorylation of the signal-responsive domain of I kappa B alpha and I kappa B beta by I kappa B kinases. J Biol Chem 278: 31980–31987.

    Article  CAS  Google Scholar 

  • Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD . (2006). Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8: 398–406.

    Article  CAS  PubMed Central  Google Scholar 

  • Xu Y, Moore DH, Broshears J, Liu L, Wilson TM, Kelley MR . (1997). The apurinic/apyrimidinic endonuclease (APE/ref-1) DNA repair enzyme is elevated in premalignant and malignant cervical cancer. Anticancer Res 17: 3713–3719.

    CAS  PubMed  Google Scholar 

  • Yang S, Irani K, Heffron SE, Jurnak F, Meyskens Jr FL . (2005). Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol Cancer Ther 4: 1923–1935.

    Article  CAS  Google Scholar 

  • Yang Z, Yang S, Misner BJ, Chiu R, Liu F, Meyskens Jr FL . (2008). Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease-1/redox factor-1, which is inhibited by resveratrol. Mol Cancer Ther 7: 3751–3760.

    Article  CAS  Google Scholar 

  • Zaky A, Busso C, Izumi T, Chattopadhyay R, Bassiouny A, Mitra S et al. (2008). Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Res 36: 1555–1566.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by grants from the National Health Research Institute (NHRI96-TD-G-111-006; NHRI97-TD-G-111-006) and the National Science Council (NSC-96-2628-B-040-002-MY3) of Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HH., Cheng, YW., Chang, J. et al. Subcellular localization of apurinic endonuclease 1 promotes lung tumor aggressiveness via NF-κB activation. Oncogene 29, 4330–4340 (2010). https://doi.org/10.1038/onc.2010.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.178

Keywords

This article is cited by

Search

Quick links