Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic instability and mammary tumor formation in mice carrying mammary-specific disruption of Chk1 and p53

Abstract

Checkpoint kinase 1 (Chk1) is a key element in the DNA-damage response pathway that is required for maintaining genomic stability. To study the potential role of Chk1 in mammary tumorigenesis, we disrupted it using a Cre/loxP system. We showed that although Chk1 heterozygosity caused abnormal development of the mammary gland, it was not sufficient to induce tumorigenesis. Simultaneous deletion of one copy of p53 failed to rescue the developmental defects; however, it synergistically induced mammary tumor formation in Chk1+/−;MMTV-Cre animals with a median time to tumor latency of about 10 months. Chk1 deficiency caused a preponderance of abnormalities, including prolongation, multipolarity, misalignment, mitotic catastrophe and loss of spindle checkpoint, that are accompanied by reduced expression of several cell cycle regulators, including Mad2. On the other hand, we also showed that Chk1 deficiency inhibited mammary tumor formation in mice carrying a homozygous deletion of p53, uncovering a complex relationship between Chk1 and p53. Furthermore, inhibition of Chk1 with a specific inhibitor, SB-218078, or acute deletion of Chk1 using small hairpin RNA killed mammary tumor cells effectively. These data show that Chk1 is critical for maintaining genome integrity and serves as a double-edged sword for cancer: although its inhibition kills cancer cells, it also triggers tumorigenesis when favorable mutations are accumulated for cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bartek J, Lukas J . (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  • Blagden S, de Bono J . (2005). Drugging cell cycle kinases in cancer therapy. Curr Drug Targets 6: 325–335.

    Article  CAS  PubMed  Google Scholar 

  • Brodie SG, Xu X, Li C, Kuo A, Leder P, Deng CX . (2001a). Inactivation of p53 tumor suppressor gene acts synergistically with c-neu oncogene in salivary gland tumorigenesis. Oncogene 20: 1445–1454.

    Article  CAS  PubMed  Google Scholar 

  • Brodie SG, Xu X, Qiao W, Li WM, Cao L, Deng CX . (2001b). Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20: 7514–7523.

    Article  CAS  PubMed  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ . (1995). Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557.

    Article  CAS  PubMed  Google Scholar 

  • Carrassa L, Sanchez Y, Erba E, Damia G . (2009). U2OS cells lacking Chk1 undergo aberrant mitosis and fail to activate the spindle checkpoint. J Cell Mol Med 13: 1565–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collura A, Blaisonneau J, Baldacci G, Francesconi S . (2005). The fission yeast Crb2/Chk1 pathway coordinates the DNA damage and spindle checkpoint in response to replication stress induced by topoisomerase I inhibitor. Mol Cell Biol 25: 7889–7899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Deng CX . (2006). BRCA1: cell cycle checkpoint, genetic instability, DNA damage response, and cancer evolution. Nucleic Acids Res 34: 1416–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng CX, Wang RH . (2003). Roles of BRCA1 in DNA damage repair: a link between development and cancer. Hum Mol Genet 12: R113–R123.

    Article  CAS  PubMed  Google Scholar 

  • Deng CX, Xu X . (2004). Generation and analysis of Brca1 conditional knockout mice. Methods Mol Biol 280: 185–200.

    CAS  PubMed  Google Scholar 

  • Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK . (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101: 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Durkin SG, Arlt MF, Howlett NG, Glover TW . (2006). Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 25: 4381–4388.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T et al. (1998). Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpha1-acid glycoprotein. Cancer Res 58: 3248–3253.

    CAS  PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ . (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816.

    Article  CAS  PubMed  Google Scholar 

  • Hotte SJ, Oza A, Winquist EW, Moore M, Chen EX, Brown S et al. (2006). Phase I trial of UCN-01 in combination with topotecan in patients with advanced solid cancers: a Princess Margaret Hospital Phase II Consortium study. Ann Oncol 17: 334–340.

    Article  CAS  PubMed  Google Scholar 

  • Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A . (2000). An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res 60: 566–572.

    CAS  PubMed  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . (2001). Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Kortmansky J, Shah MA, Kaubisch A, Weyerbacher A, Yi S, Tong W et al. (2005). Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with Fluorouracil in patients with advanced solid tumors. J Clin Oncol 23: 1875–1884.

    Article  CAS  PubMed  Google Scholar 

  • Lam MH, Liu Q, Elledge SJ, Rosen JM . (2004). Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6: 45–59.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Xiao C, Vonderhaar BK, Deng CX . (2007). A role of estrogen/ERalpha signaling in BRCA1-associated tissue-specific tumor formation. Oncogene 26: 7204–7212.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14: 1448–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE et al. (1994). p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Margolis RL . (2005). Tetraploidy and tumor development. Cancer Cell 8: 353–354.

    Article  CAS  PubMed  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W et al. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P . (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T . (2006). Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc 1: 3129–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peddibhotla S, Lam MH, Gonzalez-Rimbau M, Rosen JM . (2009). The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Natl Acad Sci USA 106: 5159–5164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L et al. (2005). Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7: 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Puc J, Parsons R . (2005). PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells. Cell Cycle 4: 927–929.

    Article  CAS  PubMed  Google Scholar 

  • Shen SX, Weaver Z, Xu X, Li C, Weinstein M, Chen L et al. (1998). A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17: 3115–3124.

    Article  CAS  PubMed  Google Scholar 

  • Sudakin V, Chan GK, Yen TJ . (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154: 925–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T et al. (2000). Aberrant cell cycle checkpoint function and early embryonic death in Chk1(−/−) mice. Genes Dev 14: 1439–1447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Bharadwaj R, Li B, Yu H . (2001). Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev Cell 1: 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L et al. (1997). Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25: 4323–4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RH, Yu H, Deng CX . (2004). A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Natl Acad Sci USA 101: 17108–17113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhou YX, Qiao W, Tominaga Y, Ouchi M, Ouchi T et al. (2006). Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25: 7148–7158.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S et al. (2003). Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278: 21767–21773.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA et al. (2001). Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28: 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW et al. (1999). Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3: 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Yarden RI, Brody LC . (2001). Identification of proteins that interact with BRCA1 by Far-Western library screening. J Cell Biochem 83: 521–531.

    Article  CAS  PubMed  Google Scholar 

  • Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC . (2002). BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 30: 285–289.

    Article  PubMed  Google Scholar 

  • Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC et al. (2007). Chk1 is required for spindle checkpoint function. Dev Cell 12: 247–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WH, Poh A, Fanous AA, Eastman A . (2008). DNA damage-induced S phase arrest in human breast cancer depends on Chk1, but G2 arrest can occur independently of Chk1, Chk2 or MAPKAPK2. Cell Cycle 7: 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Watkins JL, Piwnica-Worms H . (2002). Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci USA 99: 14795–14800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge members of Deng laboratory for a critical reading of the article. This work was supported by the Intramural Research Program of the National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-X Deng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishler, T., Li, YY., Wang, RH. et al. Genetic instability and mammary tumor formation in mice carrying mammary-specific disruption of Chk1 and p53. Oncogene 29, 4007–4017 (2010). https://doi.org/10.1038/onc.2010.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.163

Keywords

This article is cited by

Search

Quick links