Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3

Abstract

Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism by which eukaryotic cells detect and degrade transcripts containing premature termination codons. Three 'up-frameshift' proteins, UPF1, UPF2 and UPF3, are essential for this process in organisms ranging from yeast to human. We present a crystal structure at a resolution of 1.95 Å of the complex between the interacting domains of human UPF2 and UPF3b, which are, respectively, a MIF4G (middle portion of eIF4G) domain and an RNP domain (ribonucleoprotein-type RNA-binding domain). The protein-protein interface is mediated by highly conserved charged residues in UPF2 and UPF3b and involves the β-sheet surface of the UPF3b RNP domain, which is generally used by these domains to bind nucleic acids. We show that the UPF3b RNP does not bind RNA, whereas the UPF2 construct and the complex do. Our results advance understanding of the molecular mechanisms underlying the NMD quality control process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human UPF2 domain organization and sequence alignment of UPF2 and UPF3b.
Figure 2: Crystal structure of the complex between UPF2 and UPF3b.
Figure 3: Structure and surface characteristics of the UPF2–UPF3b complex and a comparison with the Y14–Mago complex.
Figure 4: Identification of critical interacting residues and RNA-binding activity of the UPF2–UPF3B complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033– 3038 (2002).

    CAS  PubMed  Google Scholar 

  2. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121– 1131 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Mendell, J.T., Medghalchi, S.M., Lake, R.G., Noensie, E.N. & Dietz, H.C. Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell. Biol. 20, 8944– 8957 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209– 223 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939– 949 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14–Mago complex. Nat. Struct. Biol. 10, 433– 439 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Gatfield, D., Unterholzner, L., Ciccarelli, F.D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960– 3970 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Denning, G., Jamieson, L., Maquat, L.E., Thompson, E.A. & Fields, A.P. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J. Biol. Chem. 276, 22709– 22714 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Chiu, S.Y., Serin, G., Ohara, O. & Maquat, L.E. Characterization of human Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upf1. RNA 9, 77– 87 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anders, K.R., Grimson, A. & Anderson, P. SMG-5, required for C. elegans nonsense-mediated mRNA decay, associates with SMG-2 and protein phosphatase 2A. EMBO J. 22, 641– 650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987– 4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607– 617 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12, 1665– 1677 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832– 1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, W., Czaplinski, K., Rao, Y. & Peltz, S.W. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J. 20, 880– 890 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198– 199 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, S., Ruiz-Echevarria, M.J., Quan, Y. & Peltz, S.W. Identification and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol. Cell. Biol. 15, 2231– 2244 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schell, T. et al. Complexes between the nonsense-mediated mRNA decay pathway factor human upf1 (up-frameshift protein 1) and essential nonsense-mediated mRNA decay factors in HeLa cells. Biochem. J. 373, 775– 783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Letunic, I. et al. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 30, 242– 244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ponting, C.P. Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem. Sci. 25, 423– 426 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Marcotrigiano, J. et al. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7, 193– 203 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8, 383– 396 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. He, F., Brown, A.H. & Jacobson, A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17, 1580– 1594 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He, F., Brown, A.H. & Jacobson, A. Interaction between Nmd2p and Upf1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast. RNA 2, 153– 170 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hall, K.B. RNA-protein interactions. Curr. Opin. Struct. Biol. 12, 283– 288 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123– 138 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579– 585 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Conte, M.R. et al. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J. 19, 3132– 3141 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lau, C.K., Diem, M.D., Dreyfuss, G. & Van Duyne, G.D. Structure of the y14-magoh core of the exon junction complex. Curr. Biol., 933– 941 (2003).

  30. Shi, H. & Xu, R.M. Crystal structure of the Drosophila Mago nashi–Y14 complex. Genes Dev. 17, 971– 976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666– 1674 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol Cell. 11, 965– 976 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mazza, C., Segref, A., Mattaj, I.W. & Cusack, S. Large-scale induced fit recognition of an m(7)GPG cap analogue by the human nuclear cap-binding complex. EMBO J. 21, 5548– 5557 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shirley, R.L., Lelivelt, M.J., Schenkman, L.R., Dahlseid, J.N. & Culbertson, M.R. A factor required for nonsense-mediated mRNA decay in yeast is exported from the nucleus to the cytoplasm by a nuclear export signal sequence. J. Cell Sci. 111, 3129– 3143 (1998).

    CAS  PubMed  Google Scholar 

  35. Shirley, R.L., Ford, A.S., Richards, M.R., Albertini, M. & Culbertson, M.R. Nuclear import of Upf3p is mediated by importin-α/-β and export to the cytoplasm is required for a functional nonsense-mediated mRNA decay pathway in yeast. Genetics 161, 1465– 1482 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795– 800 (1993).

    Article  CAS  Google Scholar 

  37. Uson, I. & Sheldrick, G.M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 643– 648 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Terwilliger, T.C., Kim, S.H. & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A 43, 1– 5 (1987).

    Article  Google Scholar 

  39. Terwilliger, T.C. Reciprocal-space solvent flattening. Acta Crystallogr. D 55, 1863– 1871 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458– 463 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).

    Article  PubMed  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240– 255 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Scherly, D. et al. Identification of the RNA binding segment of human U1 A protein and definition of its binding site on U1 snRNA. EMBO J. 8, 4163– 4170 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876– 4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: multiple sequence alignments in PostScript. Bioinformatics 15, 305– 308 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

  47. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938– 940 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Gen. 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

  49. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269– 275 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of EMBL-ESRF Joint Structural Biology Group, notably A. McCarthy and R. Ravelli, for assistance with data collection on ESRF beamlines and for help with the crystallographic analysis. We are grateful to C. Petosa and C. Mazza for their frequent advice throughout the project. We also thank L. Maquat (University of Rochester) for providing UPF2 and UPF3 cDNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Cusack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat Struct Mol Biol 11, 330–337 (2004). https://doi.org/10.1038/nsmb741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing