Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Probing molecular choreography through single-molecule biochemistry

Abstract

Single-molecule approaches are having a dramatic impact on views of how proteins work. The ability to observe molecular properties at the single-molecule level allows characterization of subpopulations and acquisition of detailed kinetic information that would otherwise be hidden in the averaging over an ensemble of molecules. In this Perspective, we discuss how such approaches have successfully been applied to in vitro–reconstituted systems of increasing complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of single-molecule fluorescence approaches to study mechanistic properties of membrane transporters and channels.
Figure 2: Schematic representation of a hypothetical DNA-bound multiprotein complex (in which colored objects represent individual proteins) and the various dynamic aspects of its behavior that are ideally suited for interrogation by single-molecule fluorescence approaches.

Similar content being viewed by others

References

  1. Ha, T. Structural dynamics and processing of nucleic acids revealed by single-molecule spectroscopy. Biochemistry 43, 4055–4063 (2004).

    Article  CAS  Google Scholar 

  2. Saleh, O.A., Allemand, J.F., Croquette, V. & Bensimon, D. Single-molecule manipulation measurements of DNA transport proteins. ChemPhysChem 6, 813–818 (2005).

    Article  CAS  Google Scholar 

  3. Seidel, R. & Dekker, C. Single-molecule studies of nucleic acid motors. Curr. Opin. Struct. Biol. 17, 80–86 (2007).

    Article  CAS  Google Scholar 

  4. Zhuang, X. Single-molecule RNA science. Annu. Rev. Biophys. Biomol. Struct. 34, 399–414 (2005).

    Article  CAS  Google Scholar 

  5. Park, H., Toprak, E. & Selvin, P.R. Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 40, 87–111 (2007).

    Article  CAS  Google Scholar 

  6. Mallik, R. & Gross, S.P. Molecular motors: strategies to get along. Curr. Biol. 14, R971–R982 (2004).

    Article  CAS  Google Scholar 

  7. Peterman, E.J., Sosa, H. & Moerner, W.E. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55, 79–96 (2004).

    Article  CAS  Google Scholar 

  8. Comstock, M.J., Ha, T. & Chemla, Y.R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods 8, 335–340 (2011).

    Article  CAS  Google Scholar 

  9. Lee, S. & Hohng, S. An optical trap combined with three-color FRET. J. Am. Chem. Soc. 135, 18260–18263 (2013).

    Article  CAS  Google Scholar 

  10. Borisenko, V. et al. Simultaneous optical and electrical recording of single gramicidin channels. Biophys. J. 84, 612–622 (2003).

    Article  CAS  Google Scholar 

  11. Loparo, J.J., Kulczyk, A.W., Richardson, C.C. & van Oijen, A.M. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange. Proc. Natl. Acad. Sci. USA 108, 3584–3589 (2011).

    Article  CAS  Google Scholar 

  12. Comstock, M.J. et al. Protein structure: direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 348, 352–354 (2015).

    Article  CAS  Google Scholar 

  13. Ribeck, N. & Saleh, O.A. Multiplexed single-molecule measurements with magnetic tweezers. Rev. Sci. Instrum. 79, 094301 (2008).

    Article  Google Scholar 

  14. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  Google Scholar 

  15. van Oijen, A.M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

    Article  CAS  Google Scholar 

  16. Collins, B.E., Ye, L.F., Duzdevich, D. & Greene, E.C. DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods Cell Biol. 123, 217–234 (2014).

    Article  Google Scholar 

  17. Xie, X.S., Choi, P.J., Li, G.W., Lee, N.K. & Lia, G. Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys 37, 417–444 (2008).

    Article  CAS  Google Scholar 

  18. Li, G.W. & Xie, X.S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  Google Scholar 

  19. Liu, Z., Lavis, L.D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).

    Article  CAS  Google Scholar 

  20. Elcock, A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struct. Biol. 20, 196–206 (2010).

    Article  CAS  Google Scholar 

  21. Hall, D. & Minton, A.P. Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta 1649, 127–139 (2003).

    Article  CAS  Google Scholar 

  22. Zhou, H.X., Rivas, G. & Minton, A.P. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys 37, 375–397 (2008).

    Article  CAS  Google Scholar 

  23. Mika, J.T. & Poolman, B. Macromolecule diffusion and confinement in prokaryotic cells. Curr. Opin. Biotechnol. 22, 117–126 (2011).

    Article  CAS  Google Scholar 

  24. Dix, J.A. & Verkman, A.S. Crowding effects on diffusion in solutions and cells. Annu. Rev. Biophys 37, 247–263 (2008).

    Article  CAS  Google Scholar 

  25. Paudel, B.P. & Rueda, D. Molecular crowding accelerates ribozyme docking and catalysis. J. Am. Chem. Soc. 136, 16700–16703 (2014).

    Article  CAS  Google Scholar 

  26. Chandradoss, S.D., Schirle, N.T., Szczepaniak, M., MacRae, I.J. & Joo, C. A dynamic search process underlies microRNA targeting. Cell 162, 96–107 (2015).

    Article  CAS  Google Scholar 

  27. Fagerberg, L., Jonasson, K., von Heijne, G., Uhlen, M. & Berglund, L. Prediction of the human membrane proteome. Proteomics 10, 1141–1149 (2010).

    Article  CAS  Google Scholar 

  28. Bakheet, T.M. & Doig, A.J. Properties and identification of antibiotic drug targets. BMC Bioinformatics 11, 195 (2010).

    Article  Google Scholar 

  29. Verhalen, B., Ernst, S., Borsch, M. & Wilkens, S. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J. Biol. Chem. 287, 1112–1127 (2012).

    Article  CAS  Google Scholar 

  30. Zhao, Y. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193 (2010).

    Article  CAS  Google Scholar 

  31. Zhao, Y. et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474, 109–113 (2011).

    Article  CAS  Google Scholar 

  32. Akyuz, N., Altman, R.B., Blanchard, S.C. & Boudker, O. Transport dynamics in a glutamate transporter homologue. Nature 502, 114–118 (2013).

    Article  CAS  Google Scholar 

  33. Dorwart, M.R., Wray, R., Brautigam, C.A., Jiang, Y. & Blount, P. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins. PLoS Biol. 8, e1000555 (2010).

    Article  Google Scholar 

  34. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    Article  CAS  Google Scholar 

  35. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  CAS  Google Scholar 

  36. Boudker, O., Ryan, R.M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  CAS  Google Scholar 

  37. Verdon, G. & Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 19, 355–357 (2012).

    Article  CAS  Google Scholar 

  38. Erkens, G.B., Hanelt, I., Goudsmits, J.M., Slotboom, D.J. & van Oijen, A.M. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013).By reconstituting FRET-labeled transporter proteins in vesicles, the authors visualized conformational changes associated with transport in the context of a lipid membrane.

    Article  CAS  Google Scholar 

  39. Akyuz, N. et al. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 518, 68–73 (2015).

    Article  CAS  Google Scholar 

  40. Strack, R.L. & Jaffrey, S.R. New approaches for sensing metabolites and proteins in live cells using RNA. Curr. Opin. Chem. Biol. 17, 651–655 (2013).

    Article  CAS  Google Scholar 

  41. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  42. Frommer, W.B., Davidson, M.W. & Campbell, R.E. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38, 2833–2841 (2009).

    Article  CAS  Google Scholar 

  43. Weatherill, E.E. & Wallace, M.I. Combining single-molecule imaging and single-channel electrophysiology. J. Mol. Biol. 427, 146–157 (2015).

    Article  CAS  Google Scholar 

  44. Harrison, S.C. Viral membrane fusion. Virology 479–480, 498–507 (2015).

    Article  Google Scholar 

  45. van Duijl-Richter, M.K., Blijleven, J., van Oijen, A. & Smit, J. Chikungunya virus fusion properties elucidated by single-particle and bulk approaches. J. Gen. Virol. 96, 2122–2132 (2015).

    Article  CAS  Google Scholar 

  46. Ivanovic, T., Choi, J.L., Whelan, S.P., van Oijen, A.M. & Harrison, S.C. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2, e00333 (2013).

    Article  Google Scholar 

  47. Otterstrom, J. & van Oijen, A.M. Visualization of membrane fusion, one particle at a time. Biochemistry 52, 1654–1668 (2013).

    Article  CAS  Google Scholar 

  48. Floyd, D.L., Ragains, J.R., Skehel, J.J., Harrison, S.C. & van Oijen, A.M. Single-particle kinetics of influenza virus membrane fusion. Proc. Natl. Acad. Sci. USA 105, 15382–15387 (2008).

    Article  CAS  Google Scholar 

  49. Otterstrom, J.J. et al. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level. Proc. Natl. Acad. Sci. USA 111, E5143–E5148 (2014).

    Article  CAS  Google Scholar 

  50. Munro, J.B. et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346, 759–763 (2014).The authors labeled a small fraction of fusion proteins on the surface of HIV particles with FRET probes and visualized conformational changes of the individual fusion trimers.

    Article  CAS  Google Scholar 

  51. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).

    Article  CAS  Google Scholar 

  52. Ticau, S., Friedman, L.J., Ivica, N.A., Gelles, J. & Bell, S.P. Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161, 513–525 (2015).By fluorescently labeling the different protein factors involved in eukaryotic replication licensing, the authors visualized protein stoichiometries and orders of assembly on DNA.

    Article  CAS  Google Scholar 

  53. Siddiqui, K., On, K.F. & Diffley, J.F. Regulating DNA replication in eukarya. Cold Spring Harb. Perspect. Biol. 5, a012930 (2013).

    Article  Google Scholar 

  54. Yardimci, H. & Walter, J.C. Prereplication-complex formation: a molecular double take? Nat. Struct. Mol. Biol. 21, 20–25 (2014).

    Article  CAS  Google Scholar 

  55. Friedman, L.J., Chung, J. & Gelles, J. Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys. J. 91, 1023–1031 (2006).

    Article  CAS  Google Scholar 

  56. Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  CAS  Google Scholar 

  57. Cisse, I., Okumus, B., Joo, C. & Ha, T. Fueling protein DNA interactions inside porous nanocontainers. Proc. Natl. Acad. Sci. USA 104, 12646–12650 (2007).

    Article  CAS  Google Scholar 

  58. Loveland, A.B., Habuchi, S., Walter, J.C. & van Oijen, A.M. A general approach to break the concentration barrier in single-molecule imaging. Nat. Methods 9, 987–992 (2012).

    Article  CAS  Google Scholar 

  59. Geertsema, H.J. et al. Single-molecule imaging at high fluorophore concentrations by local activation of dye. Biophys. J. 108, 949–956 (2015).

    Article  CAS  Google Scholar 

  60. Elshenawy, M.M. et al. Replisome speed determines the efficiency of the Tus-Ter replication termination barrier. Nature 525, 394–398 (2015).By visualizing the collisions between the replication machinery and the replication-termination complex of E. coli at the single-molecule level, the authors showed that only replisomes traveling at a certain rate are halted.

    Article  CAS  Google Scholar 

  61. Stratmann, S.A. & van Oijen, A.M. DNA replication at the single-molecule level. Chem. Soc. Rev. 43, 1201–1220 (2014).

    Article  CAS  Google Scholar 

  62. Robinson, A. & van Oijen, A.M. Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat. Rev. Microbiol. 11, 303–315 (2013).

    Article  CAS  Google Scholar 

  63. Robinson, A., Causer, R.J. & Dixon, N.E. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr. Drug Targets 13, 352–372 (2012).

    Article  CAS  Google Scholar 

  64. Tanner, N.A. et al. E. coli DNA replication in the absence of free beta clamps. EMBO J. 30, 1830–1840 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine M van Oijen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Oijen, A., Dixon, N. Probing molecular choreography through single-molecule biochemistry. Nat Struct Mol Biol 22, 948–952 (2015). https://doi.org/10.1038/nsmb.3119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3119

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing