Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Optical tweezers in single-molecule biophysics

Abstract

Optical tweezers have become the method of choice in single-molecule manipulation studies. In this Primer, we first review the physical principles of optical tweezers and the characteristics that make them a powerful tool to investigate single molecules. We then introduce the modifications of the method to extend the measurement of forces and displacements to torques and angles, and to develop optical tweezers with single-molecule fluorescence detection capabilities. We discuss force and torque calibration of these instruments, their various modes of operation and most common experimental geometries. We describe the type of data obtained in each experimental design and their analyses. This description is followed by a survey of applications of these methods to the studies of protein–nucleic acid interactions, protein/RNA folding and molecular motors. We also discuss data reproducibility, the factors that lead to the data variability among different laboratories and the need to develop field standards. We cover the current limitations of the methods and possible ways to optimize instrument operation, data extraction and analysis, before suggesting likely areas of future growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of optical tweezers.
Fig. 2: Basic designs of optical traps.
Fig. 3: Measurement geometries of standard optical traps, fleezers and angular optical traps.
Fig. 4: Example optical trapping data.
Fig. 5: Example fluorescence-trap data.
Fig. 6: Example angular optical tweezers data.
Fig. 7: Example applications of optical tweezers to study protein–DNA interactions.
Fig. 8: Example applications of optical tweezers to study protein folding.
Fig. 9: Example applications of optical tweezers to study molecular motors.

Similar content being viewed by others

References

  1. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970).

    Article  ADS  Google Scholar 

  2. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986). This study provides the first demonstration of a single-beam optical trap that has since been commonly used in single-molecule biophysics.

    Article  ADS  Google Scholar 

  3. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    Article  ADS  Google Scholar 

  4. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  Google Scholar 

  5. Jones, P. H., Marago, O. M. & Volpe, G. Optical Tweezers: Principles and Applications (Cambridge Univ. Press, 2015).

  6. Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  ADS  Google Scholar 

  7. Cecconi, C., Shank, E. A., Dahlquist, F. W., Marqusee, S. & Bustamante, C. Protein–DNA chimeras for single molecule mechanical folding studies with the optical tweezers. Eur. Biophys. J. 37, 729–738 (2008).

    Article  Google Scholar 

  8. Forth, S., Sheinin, M. Y., Inman, J. & Wang, M. D. Torque measurement at the single-molecule level. Annu. Rev. Biophys. 42, 583–604 (2013).

    Article  Google Scholar 

  9. Perkins, T. T. Angstrom-precision optical traps and applications. Annu. Rev. Biophys. 43, 279–302 (2014).

    Article  Google Scholar 

  10. Heller, I., Hoekstra, T. P., King, G. A., Peterman, E. J. & Wuite, G. J. Optical tweezers analysis of DNA–protein complexes. Chem. Rev. 114, 3087–3119 (2014).

    Article  Google Scholar 

  11. Chemla, Y. R. High-resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins. Biopolymers 105, 704–714 (2016).

    Article  Google Scholar 

  12. Killian, J. L., Ye, F. & Wang, M. D. Optical tweezers: a force to be reckoned with. Cell 175, 1445–1448 (2018).

    Article  Google Scholar 

  13. Bustamante, C., Alexander, L., Maciuba, K. & Kaiser, C. M. Single-molecule studies of protein folding with optical tweezers. Annu. Rev. Biochem. 89, 443–470 (2020).

    Article  Google Scholar 

  14. Svoboda, K. & Block, S. M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  Google Scholar 

  15. Rohrbach, A. Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. Phys. Rev. Lett. 95, 168102 (2005).

    Article  ADS  Google Scholar 

  16. Neuman, K. C., Chadd, E. H., Liou, G. F., Bergman, K. & Block, S. M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999).

    Article  Google Scholar 

  17. Smith, S. B., Cui, Y. & Bustamante, C. Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol. 361, 134–162 (2003).

    Article  Google Scholar 

  18. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    Article  ADS  Google Scholar 

  19. Allersma, M. W., Gittes, F., deCastro, M. J., Stewart, R. J. & Schmidt, C. F. Two-dimensional tracking of ncd motility by back focal plane interferometry. Biophys. J. 74, 1074–1085 (1998).

    Article  ADS  Google Scholar 

  20. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

    Article  ADS  Google Scholar 

  21. Pralle, A., Prummer, M., Florin, E. L., Stelzer, E. H. & Horber, J. K. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386 (1999).

    Article  Google Scholar 

  22. Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    Article  ADS  Google Scholar 

  23. Denk, W. & Webb, W. W. Optical measurement of picometer displacements of transparent microscopic objects. Appl. Opt. 29, 2382–2391 (1990).

    Article  ADS  Google Scholar 

  24. Berg-Sørensen, K. & Flyvbjerg, H. Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75, 594 (2004).

    Article  ADS  Google Scholar 

  25. Tolić-Nørrelykke, S. F. et al. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101 (2006).

    Article  ADS  Google Scholar 

  26. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993). This study presents the observation of individual steps of 8 nm taken by the cytoskeletal motor kinesin, the first direct measurement of the step size of any motor protein.

    Article  ADS  Google Scholar 

  27. Kuo, S. C. & Sheetz, M. P. Force of single kinesin molecules measured with optical tweezers. Science 260, 232–234 (1993).

    Article  ADS  Google Scholar 

  28. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  ADS  Google Scholar 

  29. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).

    Article  ADS  Google Scholar 

  30. Wuite, G. J., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).

    Article  ADS  Google Scholar 

  31. Adelman, K. et al. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc. Natl Acad. Sci. USA 99, 13538–13543 (2002).

    Article  ADS  Google Scholar 

  32. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996). This study reveals that DNA undergoes an overstretching transition at around 65 pN, a feature that has been commonly exploited in numerous subsequent studies.

    Article  ADS  Google Scholar 

  33. Wuite, G. J., Davenport, R. J., Rappaport, A. & Bustamante, C. An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophys. J. 79, 1155–1167 (2000).

    Article  Google Scholar 

  34. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  Google Scholar 

  35. Nugent-Glandorf, L. & Perkins, T. T. Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt. Lett. 29, 2611–2613 (2004).

    Article  ADS  Google Scholar 

  36. Mahamdeh, M. & Schaffer, E. Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt. Express 17, 17190–17199 (2009).

    Article  ADS  Google Scholar 

  37. Carter, A. R. et al. Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl. Opt. 46, 421–427 (2007).

    Article  ADS  Google Scholar 

  38. Shaevitz, J. W., Abbondanzieri, E. A., Landick, R. & Block, S. M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    Article  ADS  Google Scholar 

  39. Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R. & Block, S. M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005). This study shows direct observation of single base-pair (0.34 nm) steps taken by RNA polymerase and represents a milestone in precision measurements of optical trapping.

    Article  ADS  Google Scholar 

  40. Moffitt, J. R., Chemla, Y. R., Izhaky, D. & Bustamante, C. Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl Acad. Sci. USA 103, 9006–9011 (2006).

    Article  ADS  Google Scholar 

  41. Visscher, K., Brakenhoff, G. J. & Krol, J. J. Micromanipulation by multiple optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14, 105–114 (1993).

    Article  Google Scholar 

  42. Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE JSTQE 2, 1066–1076 (1996).

    ADS  Google Scholar 

  43. Comstock, M. J., Ha, T. & Chemla, Y. R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods 8, 335–340 (2011). This study presents state-of-the-art high-resolution fleezers that combined a time-shared dual optical trap interlaced with a confocal fluorescence microscope.

    Article  Google Scholar 

  44. Maillard, R. A. et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145, 459–469 (2011).

    Article  Google Scholar 

  45. Cecconi, C., Shank, E. A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  ADS  Google Scholar 

  46. Shank, E. A., Cecconi, C., Dill, J. W., Marqusee, S. & Bustamante, C. The folding cooperativity of a protein is controlled by its chain topology. Nature 465, 637–640 (2010).

    Article  ADS  Google Scholar 

  47. Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. & Rief, M. The complex folding network of single calmodulin molecules. Science 334, 512–516 (2011). This study makes direct observations of conformational folding transitions of single calmodulin molecules using dynamic force spectroscopy.

    Article  ADS  Google Scholar 

  48. Jahn, M., Buchner, J., Hugel, T. & Rief, M. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments. Proc. Natl Acad. Sci. USA 113, 1232–1237 (2016).

    Article  ADS  Google Scholar 

  49. Aubin-Tam, M. E., Olivares, A. O., Sauer, R. T., Baker, T. A. & Lang, M. J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Article  Google Scholar 

  50. Kaiser, C. M., Goldman, D. H., Chodera, J. D., Tinoco, I. Jr. & Bustamante, C. The ribosome modulates nascent protein folding. Science 334, 1723–1727 (2011).

    Article  ADS  Google Scholar 

  51. Bustamante, C., Chemla, Y. R. & Moffitt, J. R. in Single-Molecule Techniques: A Laboratory Manual (eds Selvin, P. R. & Ha, T.) 297–324 (Cold Spring Harbor Laboratory Press, 2008).

  52. Landry, M. P., McCall, P. M., Qi, Z. & Chemla, Y. R. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments. Biophys. J. 97, 2128–2136 (2009).

    Article  ADS  Google Scholar 

  53. Peterman, E. J., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  ADS  Google Scholar 

  54. Williams, M. C., Wenner, J. R., Rouzina, I. & Bloomfield, V. A. Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. Biophys. J. 80, 1932–1939 (2001).

    Article  Google Scholar 

  55. Mao, H., Arias-Gonzalez, J. R., Smith, S. B., Tinoco, I. Jr. & Bustamante, C. Temperature control methods in a laser tweezers system. Biophys. J. 89, 1308–1316 (2005).

    Article  Google Scholar 

  56. de Lorenzo, S., Ribezzi-Crivellari, M., Arias-Gonzalez, J. R., Smith, S. B. & Ritort, F. A temperature-jump optical trap for single-molecule manipulation. Biophys. J. 108, 2854–2864 (2015).

    Article  Google Scholar 

  57. Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    Article  ADS  Google Scholar 

  58. Li, P. T., Collin, D., Smith, S. B., Bustamante, C. & Tinoco, I. Jr. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophys. J. 90, 250–260 (2006).

    Article  ADS  Google Scholar 

  59. van Mameren, J. et al. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers. Biophys. J. 91, L78–L80 (2006).

    Article  Google Scholar 

  60. Forget, A. L. & Kowalczykowski, S. C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423–427 (2012).

    Article  ADS  Google Scholar 

  61. Avellaneda, M. J. et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature 578, 317–320 (2020).

    Article  ADS  Google Scholar 

  62. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).

    Article  Google Scholar 

  63. Harada, Y. et al. Single-molecule imaging of RNA polymerase–DNA interactions in real time. Biophys. J. 76, 709–715 (1999).

    Article  ADS  Google Scholar 

  64. Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

    Article  Google Scholar 

  65. Lee, K. S., Balci, H., Jia, H., Lohman, T. M. & Ha, T. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat. Commun. 4, 1878 (2013).

    Article  ADS  Google Scholar 

  66. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. Science 318, 279–283 (2007).

    Article  ADS  Google Scholar 

  67. Sirinakis, G., Ren, Y., Gao, Y., Xi, Z. & Zhang, Y. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev. Sci. Instrum. 83, 093708 (2012).

    Article  ADS  Google Scholar 

  68. Duesterberg, V. K., Fischer-Hwang, I. T., Perez, C. F., Hogan, D. W. & Block, S. M. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer. eLife 4, e12362 (2015).

    Article  Google Scholar 

  69. Heller, I. et al. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat. Methods 10, 910–916 (2013).

    Article  Google Scholar 

  70. van Mameren, J., Peterman, E. J. & Wuite, G. J. See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Res. 36, 4381–4389 (2008).

    Article  Google Scholar 

  71. Candelli, A., Wuite, G. J. & Peterman, E. J. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA–protein interactions. Phys. Chem. Chem Phys. 13, 7263–7272 (2011).

    Article  Google Scholar 

  72. Comstock, M. J. et al. Direct observation of structure–function relationship in a nucleic acid-processing enzyme. Science 348, 352–354 (2015).

    Article  ADS  Google Scholar 

  73. Desai, V. P. et al. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. Mol. Cell 75, 1007–1019 (2019).

    Article  Google Scholar 

  74. Newton, M. D. et al. DNA stretching induces Cas9 off-target activity. Nat. Struct. Mol. Biol. 26, 185–192 (2019).

    Article  Google Scholar 

  75. Zhou, R. et al. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 146, 222–232 (2011).

    Article  Google Scholar 

  76. Ngo, T. T., Zhang, Q., Zhou, R., Yodh, J. G. & Ha, T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160, 1135–1144 (2015).

    Article  Google Scholar 

  77. Suksombat, S., Khafizov, R., Kozlov, A. G., Lohman, T. M. & Chemla, Y. R. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. eLife 4, e08193 (2015).

    Article  Google Scholar 

  78. van Dijk, M. A., Kapitein, L. C., Mameren, J., Schmidt, C. F. & Peterman, E. J. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J. Phys. Chem. B 108, 6479–6484 (2004).

    Article  Google Scholar 

  79. Brau, R. R., Tarsa, P. B., Ferrer, J. M., Lee, P. & Lang, M. J. Interlaced optical force–fluorescence measurements for single molecule biophysics. Biophys. J. 91, 1069–1077 (2006).

    Article  ADS  Google Scholar 

  80. Lang, M. J., Fordyce, P. M. & Block, S. M. Combined optical trapping and single-molecule fluorescence. J. Biol. 2, 6 (2003).

    Article  Google Scholar 

  81. van Mameren, J. et al. Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. Nature 457, 745–748 (2009).

    Article  ADS  Google Scholar 

  82. Candelli, A. et al. Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. Proc. Natl Acad. Sci. USA 111, 15090–15095 (2014).

    Article  ADS  Google Scholar 

  83. Whitley, K. D., Comstock, M. J. & Chemla, Y. R. High-resolution ‘fleezers’: dual-trap optical tweezers combined with single-molecule fluorescence detection. Methods Mol. Biol. 1486, 183–256 (2017).

    Article  Google Scholar 

  84. Shi, X. et al. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat. Methods 9, 499–503 (2012).

    Article  Google Scholar 

  85. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl Acad. Sci. USA 101, 9955–9959 (2004).

    Article  ADS  Google Scholar 

  86. Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 25, 78–86 (2001).

    Article  Google Scholar 

  87. Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).

    Article  Google Scholar 

  88. Swoboda, M. et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano 6, 6364–6369 (2012).

    Article  Google Scholar 

  89. Rasnik, I., McKinney, S. A. & Ha, T. Surfaces and orientations: much to FRET about? Acc. Chem. Res. 38, 542–548 (2005).

    Article  Google Scholar 

  90. Joo, C. & Ha, T. in Single-Molecule Techniques: A Laboratory Manual (eds Selvin, P. R. & Ha, T.) 3–36 (Cold Spring Harbor Laboratory Press, 2008).

  91. La Porta, A. & Wang, M. D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004). This study shows the initial implementation of the angular optical trap in which a trapped quartz particle is rotated and the optical torque on the particle is directly measured.

    Article  Google Scholar 

  92. Deufel, C., Forth, S., Simmons, C. R., Dejgosha, S. & Wang, M. D. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Methods 4, 223–225 (2007).

    Article  Google Scholar 

  93. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    Article  ADS  Google Scholar 

  94. Lebel, P., Basu, A., Oberstrass, F. C., Tretter, E. M. & Bryant, Z. Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat. Methods 11, 456–462 (2014).

    Article  Google Scholar 

  95. Celedon, A. et al. Magnetic tweezers measurement of single molecule torque. Nano Lett. 9, 1720–1725 (2009).

    Article  ADS  Google Scholar 

  96. Lipfert, J., Kerssemakers, J. W., Jager, T. & Dekker, N. H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA–DNA filaments. Nat. Methods 7, 977–980 (2010).

    Article  Google Scholar 

  97. Gutierrez-Medina, B., Andreasson, J. O., Greenleaf, W. J., Laporta, A. & Block, S. M. An optical apparatus for rotation and trapping. Methods Enzymol. 475, 377–404 (2010).

    Article  Google Scholar 

  98. Friese, M. E., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    Article  ADS  Google Scholar 

  99. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    Article  ADS  Google Scholar 

  100. Ha, S. et al. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles. Nanoscale 8, 10739–10748 (2016).

    Article  ADS  Google Scholar 

  101. Ma, J., Tan, C. & Wang, M. D. Single-molecule angular optical trapping for studying transcription under torsion. Methods Mol. Biol. 1805, 301–332 (2018).

    Article  Google Scholar 

  102. Deufel, C. & Wang, M. D. Detection of forces and displacements along the axial direction in an optical trap. Biophys. J. 90, 657–667 (2006).

    Article  ADS  Google Scholar 

  103. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of λ-phage DNA. Science 265, 1599–1600 (1994).

    Article  ADS  Google Scholar 

  104. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  ADS  Google Scholar 

  105. Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  Google Scholar 

  106. Tskhovrebova, L., Trinick, J., Sleep, J. A. & Simmons, R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 387, 308–312 (1997).

    Article  ADS  Google Scholar 

  107. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  Google Scholar 

  108. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA 97, 127–132 (2000).

    Article  ADS  Google Scholar 

  109. Bennink, M. L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat. Struct. Biol. 8, 606–610 (2001).

    Article  Google Scholar 

  110. Hegner, M., Smith, S. B. & Bustamante, C. Polymerization and mechanical properties of single RecA–DNA filaments. Proc. Natl Acad. Sci. USA 96, 10109–10114 (1999).

    Article  ADS  Google Scholar 

  111. Evans, E. Probing the relation between force–lifetime–and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  Google Scholar 

  112. Dudko, O. K., Hummer, G. & Szabo, A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc. Natl Acad. Sci. USA 105, 15755–15760 (2008). This study provides the theoretical framework for dynamic force spectroscopy studies by mapping rupture force histograms from constant loading-rate experiments to force-dependent lifetimes in constant-force experiments.

    Article  ADS  Google Scholar 

  113. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

    Article  ADS  Google Scholar 

  114. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).

    Article  ADS  Google Scholar 

  115. Hummer, G. & Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl Acad. Sci. USA 98, 3658–3661 (2001).

    Article  ADS  Google Scholar 

  116. Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43 (2005).

    Article  Google Scholar 

  117. Collin, D. et al. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005).

    Article  ADS  Google Scholar 

  118. Woodside, M. T. & Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys. 43, 19–39 (2014).

    Article  Google Scholar 

  119. Spudich, J. A., Rice, S. E., Rock, R. S., Purcell, T. J. & Warrick, H. M. Optical traps to study properties of molecular motors. Cold Spring Harb. Protoc. 2011, 1305–1318 (2011).

    Article  Google Scholar 

  120. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  ADS  Google Scholar 

  121. Carter, B. C., Vershinin, M. & Gross, S. P. A comparison of step-detection methods: how well can you do? Biophys. J. 94, 306–319 (2008).

    Article  Google Scholar 

  122. Kalafut, B. & Visscher, K. An objective, model-independent method for detection of non-uniform steps in noisy signals. Comput. Phys. Commun. 179, 716–723 (2008).

    Article  ADS  Google Scholar 

  123. Syed, S., Mullner, F. E., Selvin, P. R. & Sigworth, F. J. Improved hidden Markov models for molecular motors, part 2: extensions and application to experimental data. Biophys. J. 99, 3696–3703 (2010).

    Article  ADS  Google Scholar 

  124. Righini, M. et al. Full molecular trajectories of RNA polymerase at single base-pair resolution. Proc. Natl Acad. Sci. USA 115, 1286–1291 (2018).

    Article  Google Scholar 

  125. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988).

    Article  ADS  Google Scholar 

  126. Schnitzer, M. J. & Block, S. M. Statistical kinetics of processive enzymes. Cold Spring Harb. Symp. Quant. Biol. 60, 793–802 (1995).

    Article  Google Scholar 

  127. Moffitt, J. R., Chemla, Y. R. & Bustamante, C. Methods in statistical kinetics. Methods Enzymol. 475, 221–257 (2010).

    Article  Google Scholar 

  128. Whitley, K. D., Comstock, M. J. & Chemla, Y. R. Elasticity of the transition state for oligonucleotide hybridization. Nucleic Acids Res. 45, 547–555 (2017).

    Article  Google Scholar 

  129. Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).

    Article  ADS  Google Scholar 

  130. Mitra, J. et al. Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc. Natl Acad. Sci. USA 116, 8350–8359 (2019).

    Article  Google Scholar 

  131. Forth, S. et al. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys. Rev. Lett. 100, 148301 (2008).

    Article  ADS  Google Scholar 

  132. Sheinin, M. Y., Forth, S., Marko, J. F. & Wang, M. D. Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors. Phys. Rev. Lett. 107, 108102 (2011).

    Article  ADS  Google Scholar 

  133. Forth, S., Deufel, C., Patel, S. S. & Wang, M. D. Direct measurements of torque during holliday junction migration. Biophys. J. 101, L5–L7 (2011).

    Article  Google Scholar 

  134. Inman, J., Forth, S. & Wang, M. D. Passive torque wrench and angular position detection using a single-beam optical trap. Opt. Lett. 35, 2949–2951 (2010).

    Article  ADS  Google Scholar 

  135. Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    Article  ADS  Google Scholar 

  136. Gore, J. et al. DNA overwinds when stretched. Nature 442, 836–839 (2006).

    Article  ADS  Google Scholar 

  137. Sheinin, M. Y. & Wang, M. D. Twist–stretch coupling and phase transition during DNA supercoiling. Phys. Chem. Chem. Phys. 11, 4800–4803 (2009).

    Article  Google Scholar 

  138. Seol, Y., Skinner, G. M., Visscher, K., Buhot, A. & Halperin, A. Stretching of homopolymeric RNA reveals single-stranded helices and base-stacking. Phys. Rev. Lett. 98, 158103 (2007).

    Article  ADS  Google Scholar 

  139. McIntosh, D. B., Duggan, G., Gouil, Q. & Saleh, O. A. Sequence-dependent elasticity and electrostatics of single-stranded DNA: signatures of base-stacking. Biophys. J. 106, 659–666 (2014).

    Article  ADS  Google Scholar 

  140. Rouzina, I. & Bloomfield, V. A. Force-induced melting of the DNA double helix. 2. Effect of solution conditions. Biophys. J. 80, 894–900 (2001).

    Article  Google Scholar 

  141. Bosaeus, N. et al. Tension induces a base-paired overstretched DNA conformation. Proc. Natl Acad. Sci. USA 109, 15179–15184 (2012).

    Article  ADS  Google Scholar 

  142. Zhang, X., Chen, H., Fu, H., Doyle, P. S. & Yan, J. Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proc. Natl Acad. Sci. USA 109, 8103–8108 (2012).

    Article  ADS  Google Scholar 

  143. King, G. A. et al. Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proc. Natl Acad. Sci. USA 110, 3859–3864 (2013).

    Article  ADS  Google Scholar 

  144. Brower-Toland, B. D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl Acad. Sci. USA 99, 1960–1965 (2002).

    Article  ADS  Google Scholar 

  145. Brower-Toland, B. et al. Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes. J. Mol. Biol. 346, 135–146 (2005).

    Article  Google Scholar 

  146. Mihardja, S., Spakowitz, A. J., Zhang, Y. & Bustamante, C. Effect of force on mononucleosomal dynamics. Proc. Natl Acad. Sci. USA 103, 15871–15876 (2006).

    Article  ADS  Google Scholar 

  147. Shundrovsky, A., Smith, C. L., Lis, J. T., Peterson, C. L. & Wang, M. D. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat. Struct. Mol. Biol. 13, 549–554 (2006).

    Article  Google Scholar 

  148. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  ADS  Google Scholar 

  149. Smith, D. E. et al. The bacteriophage straight φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  ADS  Google Scholar 

  150. Perkins, T. T., Li, H. W., Dalal, R. V., Gelles, J. & Block, S. M. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648 (2004).

    Article  ADS  Google Scholar 

  151. Chemla, Y. R. et al. Mechanism of force generation of a viral DNA packaging motor. Cell 122, 683–692 (2005).

    Article  Google Scholar 

  152. Galburt, E. A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).

    Article  ADS  Google Scholar 

  153. Liu, S. et al. A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell 157, 702–713 (2014). This study shows direct visualization of the rotational motion of a viral packaging motor, which is a significant application of the rotary bead assay.

    Article  Google Scholar 

  154. Moffitt, J. R. et al. Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446–450 (2009).

    Article  ADS  Google Scholar 

  155. Chistol, G. et al. High degree of coordination and division of labor among subunits in a homomeric ring ATPase. Cell 151, 1017–1028 (2012).

    Article  Google Scholar 

  156. Qi, Z., Pugh, R. A., Spies, M. & Chemla, Y. R. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. eLife 2, e00334 (2013).

    Article  Google Scholar 

  157. Huguet, J. M. et al. Single-molecule derivation of salt dependent base-pair free energies in DNA. Proc. Natl Acad. Sci. USA 107, 15431–15436 (2010).

    Article  ADS  Google Scholar 

  158. Koch, S. J., Shundrovsky, A., Jantzen, B. C. & Wang, M. D. Probing protein–DNA interactions by unzipping a single DNA double helix. Biophys. J. 83, 1098–1105 (2002).

    Article  ADS  Google Scholar 

  159. Koch, S. J. & Wang, M. D. Dynamic force spectroscopy of protein–DNA interactions by unzipping DNA. Phys. Rev. Lett. 91, 028103 (2003).

    Article  ADS  Google Scholar 

  160. Hall, M. A. et al. High-resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    Article  Google Scholar 

  161. Jin, J. et al. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat. Struct. Mol. Biol. 17, 745–752 (2010).

    Article  Google Scholar 

  162. Chen, Z. et al. High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. eLife 8, e48281 (2019).

    Article  Google Scholar 

  163. Killian, J. L., Inman, J. T. & Wang, M. D. High-performance image-based measurements of biological forces and interactions in a dual optical trap. ACS Nano 12, 11963–11974 (2018).

    Article  Google Scholar 

  164. Dumont, S. et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108 (2006).

    Article  ADS  Google Scholar 

  165. Johnson, D. S., Bai, L., Smith, B. Y., Patel, S. S. & Wang, M. D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309 (2007).

    Article  Google Scholar 

  166. Sun, B. et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature 478, 132–135 (2011).

    Article  ADS  Google Scholar 

  167. Sun, B. et al. T7 replisome directly overcomes DNA damage. Nat. Commun. 6, 10260 (2015).

    Article  ADS  Google Scholar 

  168. Sun, B. et al. Helicase promotes replication re-initiation from an RNA transcript. Nat. Commun. 9, 2306 (2018).

    Article  ADS  Google Scholar 

  169. Le, T. T. et al. Mfd dynamically regulates transcription via a release and catch-up mechanism. Cell 172, 344–357 (2018).

    Article  Google Scholar 

  170. Sheinin, M. Y., Li, M., Soltani, M., Luger, K. & Wang, M. D. Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. Nat. Commun. 4, 2579 (2013).

    Article  ADS  Google Scholar 

  171. Le, T. T. et al. Synergistic coordination of chromatin torsional mechanics and topoisomerase activity. Cell 179, 619–631 (2019).

    Article  Google Scholar 

  172. Ma, J., Bai, L. & Wang, M. D. Transcription under torsion. Science 340, 1580–1583 (2013). This study presents the measurement of the torque generated by RNA polymerase during transcription, and is the first application of the angular optical trap to study a motor protein.

    Article  ADS  Google Scholar 

  173. Ma, J. et al. Transcription factor regulation of RNA polymerase’s torque generation capacity. Proc. Natl Acad. Sci. USA 116, 2583–2588 (2019).

    Article  Google Scholar 

  174. Stone, M. D. et al. Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc. Natl Acad. Sci. USA 100, 8654–8659 (2003).

    Article  ADS  Google Scholar 

  175. Bianco, P. R. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001).

    Article  ADS  Google Scholar 

  176. Bell, J. C., Plank, J. L., Dombrowski, C. C. & Kowalczykowski, S. C. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 491, 274–278 (2012).

    Article  ADS  Google Scholar 

  177. Lee, K. S. et al. Ultrafast redistribution of E. coli SSB along long single-stranded DNA via intersegment transfer. J. Mol. Biol. 426, 2413–2421 (2014).

    Article  Google Scholar 

  178. Wasserman, M. R., Schauer, G. D., O'Donnell, M. E. & Liu, S. Replication fork activation is enabled by a single-stranded DNA gate in CMG helicase. Cell 178, 600–611 (2019).

    Article  Google Scholar 

  179. Arslan, S., Khafizov, R., Thomas, C. D., Chemla, Y. R. & Ha, T. Protein structure. Engineering of a superhelicase through conformational control. Science 348, 344–347 (2015).

    Article  ADS  Google Scholar 

  180. Dame, R. T., Noom, M. C. & Wuite, G. J. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

    Article  ADS  Google Scholar 

  181. Brouwer, I. et al. Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA. Nature 535, 566–569 (2016). This study describes the application of a fleezers instrument using dual- and quadruple-trap optical tweezers combined with fluorescence to study the interactions of non-homologous end-joining proteins with their DNA substrates.

    Article  ADS  Google Scholar 

  182. Inman, J. T. et al. DNA Y structure: a versatile, multidimensional single molecule assay. Nano Lett. 14, 6475–6480 (2014).

    Article  ADS  Google Scholar 

  183. Seol, Y., Skinner, G. M. & Visscher, K. Elastic properties of a single-stranded charged homopolymeric ribonucleotide. Phys. Rev. Lett. 93, 118102 (2004).

    Article  ADS  Google Scholar 

  184. Camunas-Soler, J., Ribezzi-Crivellari, M. & Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annu. Rev. Biophys. 45, 65–84 (2016).

    Article  Google Scholar 

  185. Cheng, W., Arunajadai, S. G., Moffitt, J. R., Tinoco, I. Jr & Bustamante, C. Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science 333, 1746–1749 (2011).

    Article  ADS  Google Scholar 

  186. Wen, J. D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008).

    Article  ADS  Google Scholar 

  187. Qu, X. et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121 (2011).

    Article  Google Scholar 

  188. Yan, S., Wen, J. D., Bustamante, C. & Tinoco, I. Jr. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 160, 870–881 (2015).

    Article  Google Scholar 

  189. Yu, H. et al. Direct observation of multiple misfolding pathways in a single prion protein molecule. Proc. Natl Acad. Sci. USA 109, 5283–5288 (2012).

    Article  ADS  Google Scholar 

  190. Jahn, M. et al. Folding and domain interactions of three orthologs of Hsp90 studied by single-molecule force spectroscopy. Structure 26, 96–105 (2018).

    Article  Google Scholar 

  191. Guinn, E. J., Jagannathan, B. & Marqusee, S. Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein. Nat. Commun. 6, 6861 (2015).

    Article  ADS  Google Scholar 

  192. Motlagh, H. N., Toptygin, D., Kaiser, C. M. & Hilser, V. J. Single-molecule chemo-mechanical spectroscopy provides structural identity of folding intermediates. Biophys. J. 110, 1280–1290 (2016).

    Article  ADS  Google Scholar 

  193. Yu, H. et al. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape. Proc. Natl Acad. Sci. USA 112, 8308–8313 (2015).

    Article  ADS  Google Scholar 

  194. Neupane, K. et al. Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352, 239–242 (2016).

    Article  ADS  Google Scholar 

  195. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  196. Leopold, P. E., Montal, M. & Onuchic, J. N. Protein folding funnels: a kinetic approach to the sequence–structure relationship. Proc. Natl Acad. Sci. USA 89, 8721–8725 (1992).

    Article  ADS  Google Scholar 

  197. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995).

    Article  Google Scholar 

  198. Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997).

    Article  Google Scholar 

  199. Bai, Y., Sosnick, T. R., Mayne, L. & Englander, S. W. Protein folding intermediates: native-state hydrogen exchange. Science 269, 192–197 (1995).

    Article  ADS  Google Scholar 

  200. Englander, S. W. & Mayne, L. The nature of protein folding pathways. Proc. Natl Acad. Sci. USA 111, 15873–15880 (2014).

    Article  ADS  Google Scholar 

  201. Englander, S. W., Mayne, L., Kan, Z. Y. & Hu, W. Protein folding—how and why: by hydrogen exchange, fragment separation, and mass spectrometry. Annu. Rev. Biophys. 45, 135–152 (2016).

    Article  Google Scholar 

  202. Wolynes, P. Biomolecular folding. Moments of excitement. Science 352, 150–151 (2016).

    Article  ADS  Google Scholar 

  203. Englander, S. W. & Mayne, L. The case for defined protein folding pathways. Proc. Natl Acad. Sci. USA 114, 8253–8258 (2017).

    Article  Google Scholar 

  204. Bechtluft, P. et al. Direct observation of chaperone-induced changes in a protein folding pathway. Science 318, 1458–1461 (2007).

    Article  ADS  Google Scholar 

  205. Mashaghi, A. et al. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500, 98–101 (2013).

    Article  ADS  Google Scholar 

  206. Liu, K., Maciuba, K. & Kaiser, C. M. The ribosome cooperates with a chaperone to guide multi-domain protein folding. Mol. Cell 74, 310–319 (2019).

    Article  Google Scholar 

  207. Mashaghi, A. et al. Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539, 448–451 (2016).

    Article  ADS  Google Scholar 

  208. Liu, K., Rehfus, J. E., Mattson, E. & Kaiser, C. M. The ribosome destabilizes native and non-native structures in a nascent multidomain protein. Protein Sci. 26, 1439–1451 (2017).

    Article  Google Scholar 

  209. Wruck, F., Katranidis, A., Nierhaus, K. H., Buldt, G. & Hegner, M. Translation and folding of single proteins in real time. Proc. Natl Acad. Sci. USA 114, E4399–E4407 (2017).

    Article  Google Scholar 

  210. Alexander, L. M., Goldman, D. H., Wee, L. M. & Bustamante, C. Non-equilibrium dynamics of a nascent polypeptide during translation suppress its misfolding. Nat. Commun. 10, 2709 (2019).

    Article  ADS  Google Scholar 

  211. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  Google Scholar 

  212. Kolomeisky, A. B. & Fisher, M. E. Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007).

    Article  ADS  Google Scholar 

  213. Sheetz, M. P. & Spudich, J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303, 31–35 (1983).

    Article  ADS  Google Scholar 

  214. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  Google Scholar 

  215. Mickolajczyk, K. J. et al. Force-dependent stimulation of RNA unwinding by SARS-CoV-2 nsp13 helicase. Biophys. J. https://doi.org/10.1016/j.bpj.2020.11.2276 (2020).

  216. Liu, S., Chistol, G. & Bustamante, C. Mechanical operation and intersubunit coordination of ring-shaped molecular motors: insights from single-molecule studies. Biophys. J. 106, 1844–1858 (2014).

    Article  ADS  Google Scholar 

  217. Aathavan, K. et al. Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461, 669–673 (2009).

    Article  ADS  Google Scholar 

  218. Tafoya, S. et al. Molecular switch-like regulation enables global subunit coordination in a viral ring ATPase. Proc. Natl Acad. Sci. USA 115, 7961–7966 (2018).

    Article  Google Scholar 

  219. Keller, D. & Bustamante, C. The mechanochemistry of molecular motors. Biophys. J. 78, 541–556 (2000).

    Article  Google Scholar 

  220. Larson, M. H. et al. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proc. Natl Acad. Sci. USA 109, 6555–6560 (2012).

    Article  ADS  Google Scholar 

  221. Dangkulwanich, M. et al. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife 2, e00971 (2013).

    Article  Google Scholar 

  222. Wang, H. Y., Elston, T., Mogilner, A. & Oster, G. Force generation in RNA polymerase. Biophys. J. 74, 1186–1202 (1998).

    Article  ADS  Google Scholar 

  223. Bai, L., Fulbright, R. M. & Wang, M. D. Mechanochemical kinetics of transcription elongation. Phys. Rev. Lett. 98, 068103 (2007).

    Article  ADS  Google Scholar 

  224. D, O. M., Tadigotla, V. R., Nudler, E. & Ruckenstein, A. E. A unified model of transcription elongation: what have we learned from single-molecule experiments? Biophys. J. 100, 1157–1166 (2011).

    Article  Google Scholar 

  225. Liu, T. et al. Direct measurement of the mechanical work during translocation by the ribosome. eLife 3, e03406 (2014).

    Article  Google Scholar 

  226. Block, S. M., Asbury, C. L., Shaevitz, J. W. & Lang, M. J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl Acad. Sci. USA 100, 2351–2356 (2003).

    Article  ADS  Google Scholar 

  227. Hwang, W. & Karplus, M. Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc. Natl Acad. Sci. USA 116, 19777–19785 (2019).

    Article  Google Scholar 

  228. Sen, M. et al. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell 155, 636–646 (2013).

    Article  Google Scholar 

  229. Liu, N., Chistol, G., Cui, Y. & Bustamante, C. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE. eLife 7, e32354 (2018).

    Article  Google Scholar 

  230. Lu, H. P., Xun, L. & Xie, X. S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  ADS  Google Scholar 

  231. van Oijen, A. M. et al. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003).

    Article  ADS  Google Scholar 

  232. Fuller, D. N., Raymer, D. M., Kottadiel, V. I., Rao, V. B. & Smith, D. E. Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc. Natl Acad. Sci. USA 104, 16868–16873 (2007).

    Article  ADS  Google Scholar 

  233. Liu, B., Baskin, R. J. & Kowalczykowski, S. C. DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature 500, 482–485 (2013).

    Article  ADS  Google Scholar 

  234. Hellenkamp, B. et al. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods 15, 669–676 (2018).

    Article  Google Scholar 

  235. Huisstede, J. H., van Rooijen, B. D., van der Werf, K. O., Bennink, M. L. & Subramaniam, V. Dependence of silicon position-detector bandwidth on wavelength, power, and bias. Opt. Lett. 31, 610–612 (2006).

    Article  ADS  Google Scholar 

  236. Sudhakar, S. et al. Germanium nanospheres for ultraresolution picotensiometry of kinesin motors. Science 371, eabd9944 (2021).

    Article  Google Scholar 

  237. Bai, H. et al. Remote control of DNA-acting enzymes by varying the Brownian dynamics of a distant DNA end. Proc. Natl Acad. Sci. USA 109, 16546–16551 (2012).

    Article  ADS  Google Scholar 

  238. Pfitzner, E. et al. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. Int. Ed. Engl. 52, 7766–7771 (2013).

    Article  Google Scholar 

  239. Kojima, H., Muto, E., Higuchi, H. & Yanagida, T. Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73, 2012–2022 (1997).

    Article  Google Scholar 

  240. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  Google Scholar 

  241. Ribeck, N. & Saleh, O. A. Multiplexed single-molecule measurements with magnetic tweezers. Rev. Sci. Instrum. 79, 094301 (2008).

    Article  ADS  Google Scholar 

  242. Greene, E. C., Wind, S., Fazio, T., Gorman, J. & Visnapuu, M. L. DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol. 472, 293–315 (2010).

    Article  Google Scholar 

  243. De Vlaminck, I. et al. Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett. 11, 5489–5493 (2011).

    Article  ADS  Google Scholar 

  244. Farre, A., van der Horst, A., Blab, G. A., Downing, B. P. & Forde, N. R. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers. J. Biophotonics 3, 224–233 (2010).

    Article  Google Scholar 

  245. Soltani, M. et al. Nanophotonic trapping for precise manipulation of biomolecular arrays. Nat. Nanotechnol. 9, 448–452 (2014).

    Article  ADS  Google Scholar 

  246. Veigel, C. & Schmidt, C. F. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12, 163–176 (2011).

    Article  Google Scholar 

  247. Hendricks, A. G., Holzbaur, E. L. & Goldman, Y. E. Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl Acad. Sci. USA 109, 18447–18452 (2012).

    Article  ADS  Google Scholar 

  248. Blehm, B. H., Schroer, T. A., Trybus, K. M., Chemla, Y. R. & Selvin, P. R. In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc. Natl Acad. Sci. USA 110, 3381–3386 (2013).

    Article  ADS  Google Scholar 

  249. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  ADS  Google Scholar 

  250. Moroz, J. D. & Nelson, P. Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl Acad. Sci. USA 94, 14418–14422 (1997).

    Article  ADS  Google Scholar 

  251. Herrero-Galan, E. et al. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 135, 122–131 (2013).

    Article  Google Scholar 

  252. Baumann, C. G., Smith, S. B., Bloomfield, V. A. & Bustamante, C. Ionic effects on the elasticity of single DNA molecules. Proc. Natl Acad. Sci. USA 94, 6185–6190 (1997).

    Article  ADS  Google Scholar 

  253. Saleh, O. A., McIntosh, D. B., Pincus, P. & Ribeck, N. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 102, 068301 (2009).

    Article  ADS  Google Scholar 

  254. Goldman, D. H. et al. Ribosome. mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348, 457–460 (2015).

    Article  ADS  Google Scholar 

  255. Marko, J. F. & Siggia, E. D. Fluctuations and supercoiling of DNA. Science 265, 506–508 (1994).

    Article  ADS  Google Scholar 

  256. Odijk, T. Stiff chains and filaments under tension. Macromolecules 28, 7016–7018 (1995).

    Article  ADS  Google Scholar 

  257. Bouchiat, C. & Mezard, M. Elasticity model of a supercoiled DNA molecule. Phys. Rev. Lett. 80, 1556–1559 (1998).

    Article  ADS  Google Scholar 

  258. Kratky, O. & Porod, G. Röntgenuntersuchung gelöster fadenmoleküle [German]. Recl. Trav. Chim. Pays-Bas 68, 1106–1123 (1949).

    Article  Google Scholar 

  259. Jacobson, D. R., McIntosh, D. B., Stevens, M. J., Rubinstein, M. & Saleh, O. A. Single-stranded nucleic acid elasticity arises from internal electrostatic tension. Proc. Natl Acad. Sci. USA 114, 5095–5100 (2017).

    Article  Google Scholar 

  260. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  ADS  Google Scholar 

  261. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  Google Scholar 

  262. Hummer, G. & Szabo, A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 85, 5–15 (2003).

    Article  ADS  Google Scholar 

  263. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    Article  ADS  Google Scholar 

  264. Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56, 5018–5035 (1997).

    Article  ADS  Google Scholar 

  265. Crooks, G. E. Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481–1487 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  266. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. Jr. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002). This study demonstrates the mechanical unfolding and refolding of RNA and is the first experimental validation of Jarzynski’s equality, which relates irreversible work to equilibrium free energy difference.

    Article  ADS  Google Scholar 

  267. Camunas-Soler, J., Alemany, A. & Ritort, F. Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems. Science 355, 412–415 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors dedicate this Primer to A. Ashkin (1922–2020), whose ingenious invention of optical tweezers has greatly influenced the field of single-molecule biophysics. This work is supported by the Nanomachines programme (KC1203) funded by the Office of Basic Energy Sciences of the US Department of Energy (DOE) contract no. DE-AC02-05CH11231, National Institutes of Health (NIH) grants R01GM032543 (to C.J.B.), R01GM120353 (to Y.R.C.), DP2HG010510 (to S.L.) and R01GM136894 (to M.D.W.), and National Science Foundation (NSF) grants PHY-1430124 (Physics Frontiers Center (PFC) ‘Center for the Physics of Living Cells’ to Y.R.C.) and MCB-1517764 (to M.D.W.). C.J.B. and M.D.W. are Howard Hughes Medical Institute investigators. S.L. is supported by the Robertson Foundation and thanks M. Wasserman for discussions. M.D.W. thanks J. Inman and G. Xiang for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.J.B.); Experimentation (Y.R.C. and M.D.W.); Results (S.L., Y.R.C. and M.D.W.); Applications (M.D.W., C.J.B., S.L. and Y.R.C.); Reproducibility and data deposition (S.L.); Limitations and optimizations (Y.R.C.); Outlook (C.J.B.); Overview of the Primer (C.J.B.).

Corresponding authors

Correspondence to Carlos J. Bustamante, Yann R. Chemla, Shixin Liu or Michelle D. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks Yuxuan Ren, Felix Ritort, Sander Tans and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Thermal bath

(Also known as heat bath, or thermal reservoir in thermodynamics and statistical mechanics). A large body held at constant temperature in which the system of interest is immersed and with which it is in thermal equilibrium. It is assumed to possess a large heat capacity and to be essentially an infinite source of thermal energy so that it can exchange energy with the system (as a thermal source or as a heat sink) without altering its temperature.

Torques

Cross products of the position vector (pointing from the axis of rotation to the point of application of the force) and the force driving the rotation.

Wavelength

The distance between two maxima of the light’s electric or magnetic field.

Rayleigh scatterer

An object whose dimensions are much smaller than the wavelength of the light.

Polarizability

A dipole moment is generated when a distribution of charges experiences a separation of positive and negative charges under the influence of an electric field. The magnitude of the dipole is proportional to the amplitude of the electric field \(\mathop{E}\limits^{\rightharpoonup }\). The constant of proportionality is the polarizability of the charge distribution.

Electric dipole

A pair of electric charges of equal magnitude but opposite signs separated by a finite distance.

Gaussian laser beam

A light beam whose intensity can be described with a Gaussian function, maximal at its axis and decreasing towards its periphery.

Permittivity

A measure of the electric polarizability of the medium.

Absorption

A process in which the energy carried by light is transferred to the sample.

Refraction

A change in the direction of the travelling beam by the presence of an object that has a different index of refraction to the surrounding medium, when that beam impinges on it obliquely.

Reflection

A process by which the light that impinges on a surface of an object bounces back from that surface instead of being absorbed or refracted by the object.

Extinction cross-section

A measure of the efficiency with which a given object can absorb or scatter the light that impinges on it.

Poynting vector

A quantity that describes the magnitude and direction of the flow of energy of a propagating electromagnetic wave.

Geometric or ray optics

A description of light in terms of rays that describe in an approximate manner the paths along which the light travels.

Refractive objects

Objects that possess a different index of refraction to the medium in which they are immersed and that deflect light that impinges on them obliquely.

High numerical aperture

The range of angles over which a lens can collect light; the larger the numerical aperture, the larger the angular range.

Condenser lens

A standard optical microscope component typically used to focus the microscope light into the specimen; in optical traps it is often used to collect scattered trap light.

Back focal plane interferometry

A technique in which the interference pattern between the light transmitted and the light forward-scattered by the trapped particle is used to determine the position of the particle relative to the trap centre.

Linear range

The range of input parameters over which the output of the system depends linearly on the input.

Measurement bandwidths

The rates at which data are collected.

Boltzmann constant

A fundamental physical constant that relates the kinetic energy of a gas to its absolute temperature. It is closely related to the gas constant R.

Hydrodynamic drag coefficient

A coefficient characterizing the viscous resistance that a particle moving through a fluid encounters.

Pointing drift

Unwanted changes in the direction of a beam of light.

Brownian motion

The random fluctuation of a particle’s position (and orientation) at a given temperature.

Feedback loop

A self-regulating mechanism in which the output of a system is routed back into an input to the system. In negative feedback, the output is fed back in a fashion that tends to reduce fluctuations in the output.

Fluorophores

Fluorescent chemical compounds or molecules.

Oxygen scavengers

Enzymatic systems that remove molecular oxygen detrimental to fluorescence.

Extraordinary axis

(Also known as the ‘optic axis’). For a uniaxial crystal that has a refractive index of one crystal axis that is different from the other two crystal axes, light propagating parallel to this optic axis experiences the same index of refraction regardless of its polarization.

Laser polarization

The polarization of the light refers to the direction of the electric field.

Laguerre–Gaussian beam

A mode of laser that can carry both orbital and spin angular momentum.

Michaelis–Menten kinetic parameters

Parameters that relate the rate of an enzymatic reaction v to the substrate concentration [S] by the formula v = Vmax[S] / (KM + [S]), where Vmax and KM represent the maximum rate and the substrate concentration at which the reaction rate is half of Vmax, respectively.

Temporal resolution

The measure of the fastest signal that can be detected accurately.

Biolistic

A method of introducing beads inside cells by shooting them ballistically inside the cells at supersonic speeds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, C.J., Chemla, Y.R., Liu, S. et al. Optical tweezers in single-molecule biophysics. Nat Rev Methods Primers 1, 25 (2021). https://doi.org/10.1038/s43586-021-00021-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-021-00021-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing