Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Fluorescence resonance energy transfer at the single-molecule level

Abstract

Fluorescence resonance energy transfer (FRET) is a powerful spectroscopic method for measuring distances in the 2–8 nm range. Often, conformational changes and molecular interactions are difficult or impossible to synchronize, or too rare or transient to detect using ensemble FRET. Single-molecule FRET (smFRET) opens new opportunities to probe biomolecular conformational changes or interactions that are missing in static snapshots provided by traditional structural biology tools, as well as to measure the kinetics of these dynamics on various timescales and under physiological conditions, including inside cells. Advances in labelling technologies, combining smFRET with optical and magnetic tweezers and Bayesian inference-based and information theory-based analysis tools are revealing rich biomolecular dynamics. We also discuss the challenges and opportunities in integrating dynamics into traditionally static structural biology approaches, extending smFRET into cells and tissues, advancing technical innovations and democratizing the practice of smFRET.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: smFRET and its advantages.
Fig. 2: Illustration of the experimental set-ups for smFRET.
Fig. 3: Data analysis for TIRF-based smFRET.
Fig. 4: Data analysis for confocal-based smFRET.
Fig. 5: smFRET studies of the temperature dependence of ribosome conformational dynamics.
Fig. 6: Cy5 fluorophore blinking.

Similar content being viewed by others

References

  1. Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719–726 (1967).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ha, T. et al. Probing the interaction between two single molecules — fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule Forster resonance energy transfer. Science 359, eaan1133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hohng, S. et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318, 279–283 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tarsa, P. B. et al. Detecting force-induced molecular transitions with fluorescence resonant energy transfer. Angew. Chem. Int. Ed. 46, 1999–2001 (2007).

    Article  CAS  Google Scholar 

  7. Shroff, H. et al. Biocompatible force sensor with optical readout and dimensions of 6 nm3. Nano Lett. 5, 1509–1514 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lee, M., Kim, S. H. & Hong, S. C. Minute negative superhelicity is sufficient to induce the B–Z transition in the presence of low tension. Proc. Natl Acad. Sci. USA 107, 4985–4990 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hellenkamp, B. et al. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods 15, 669–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalinin, S. et al. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Methods 9, 1218–1225 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Hohng, S., Joo, C. & Ha, T. Single-molecule three-color FRET. Biophys. J. 87, 1328–1337 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clamme, J. P. & Deniz, A. A. Three-color single-molecule fluorescence resonance energy transfer. Chemphyschem 6, 74–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, J. et al. Single-molecule four-color FRET. Angew. Chem. Int. Ed. 49, 9922–9925 (2010).

    Article  CAS  Google Scholar 

  14. Feng, X. A., Poyton, M. F. & Ha, T. Multicolor single-molecule FRET for DNA and RNA processes. Curr. Opin. Struct. Biol. 70, 26–33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Axelrod, D., Burghardt, T. P. & Thompson, N. L. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Lerner, E. et al. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. eLife 10, e60416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho, Y., An, H. J., Kim, T., Lee, C. & Lee, N. K. Mechanism of cyanine5 to cyanine3 photoconversion and its application for high-density single-particle tracking in a living cell. J. Am. Chem. Soc. 143, 14125–14135 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Mashanov, G. I., Tacon, D., Knight, A. E., Peckham, M. & Molloy, J. E. Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29, 142–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Juette, M. F. et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deniz, A. A. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proc. Natl Acad. Sci. USA 96, 3670–3675 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kapanidis, A. N. et al. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl Acad. Sci. USA 101, 8936–8941 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oikawa, H., Takahashi, T., Kamonprasertsuk, S. & Takahashi, S. Microsecond resolved single-molecule FRET time series measurements based on the line confocal optical system combined with hybrid photodetectors. Phys. Chem. Chem Phys 20, 3277–3285 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Nir, E. et al. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muller, B. K., Zaychikov, E., Brauchle, C. & Lamb, D. C. Pulsed interleaved excitation. Biophys. J. 89, 3508–3522 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Laurence, T. A., Kong, X., Jager, M. & Weiss, S. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc. Natl Acad. Sci. USA 102, 17348–17353 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chung, H. S., McHale, K., Louis, J. M. & Eaton, W. A. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335, 981–984 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hohng, S., Lee, S., Lee, J. & Jo, M. H. Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev. 43, 1007–1013 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Sakon, J. J. & Weninger, K. R. Detecting the conformation of individual proteins in live cells. Nat. Methods 7, 203–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fessl, T. et al. Towards characterization of DNA structure under physiological conditions in vivo at the single-molecule level using single-pair FRET. Nucleic Acids Res. 40, e121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crawford, R. et al. Long-lived intracellular single-molecule fluorescence using electroporated molecules. Biophys. J. 105, 2439–2450 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34, 52–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Asher, W. B. et al. Single-molecule FRET imaging of GPCR dimers in living cells. Nat. Methods 18, 397–405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, Z. W. et al. Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc. Natl Acad. Sci. USA 111, 681–686 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Brasselet, S., Peterman, E. J. G., Miyawaki, A. & Moerner, W. E. Single-molecule fluorescence resonant energy transfer in calcium concentration dependent cameleon. J. Phys. Chem. B 104, 3676–3682 (2000).

    Article  CAS  Google Scholar 

  35. Hohng, S. & Ha, T. Single-molecule quantum-dot fluorescence resonance energy transfer. Chemphyschem 6, 956–960 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Poyton, M. F. et al. Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. Sci. Adv. 8, eabj5509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ratzke, C., Hellenkamp, B. & Hugel, T. Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery. Nat. Commun. 5, 4192 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Das, D. K. et al. Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell 174, 926–937.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nikic, I. & Lemke, E. A. Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. Curr. Opin. Chem. Biol. 28, 164–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Desai, B. J. & Gonzalez, R. L. Jr Multiplexed genomic encoding of non-canonical amino acids for labeling large complexes. Nat. Chem. Biol. 16, 1129–1135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. England, P. M. Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry 43, 11623–11629 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Joo, C. & Ha, T. Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.top072058 (2012).

  43. Paul, T., Ha, T. & Myong, S. Regeneration of PEG slide for multiple rounds of single-molecule measurements. Biophys. J. 120, 1788–1799 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hua, B. et al. An improved surface passivation method for single-molecule studies. Nat. Methods 11, 1233–1236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boukobza, E., Sonnenfeld, A. & Haran, G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J. Phys. Chem. B 105, 12165–12170 (2001).

    Article  CAS  Google Scholar 

  46. Cohen, A. E. & Moerner, W. E. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett. 86, 093109 (2005).

    Article  ADS  Google Scholar 

  47. Pollok, B. A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Bajar, B. T., Wang, E. S., Zhang, S., Lin, M. Z. & Chu, J. A guide to fluorescent protein FRET pairs. Sensors 16, 1488 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Konig, I. et al. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12, 773–779 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, S. et al. Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli. Nat. Commun. 10, 5131 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390–4399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edelstein, A. D. et al. Advanced methods of microscope control using muManager software. J. Biol. Methods 1, e10 (2014).

    Article  PubMed  Google Scholar 

  53. Seo, M. H., Park, J., Kim, E., Hohng, S. & Kim, H. S. Protein conformational dynamics dictate the binding affinity for a ligand. Nat. Commun. 5, 3724 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Helmerich, D. A., Beliu, G., Matikonda, S. S., Schnermann, M. J. & Sauer, M. Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. Nat. Methods 18, 253–257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng, Q. et al. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 43, 1044–1056 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zosel, F., Mercadante, D., Nettels, D. & Schuler, B. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 9, 3332 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Preus, S., Hildebrandt, L. L. & Birkedal, V. Optimal background estimators in single-molecule FRET microscopy. Biophys. J. 111, 1278–1286 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Borner, R. et al. Simulations of camera-based single-molecule fluorescence experiments. PLoS ONE 13, e0195277 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Holden, S. J. et al. Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys. J. 99, 3102–3111 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Preus, S., Noer, S. L., Hildebrandt, L. L., Gudnason, D. & Birkedal, V. iSMS: single-molecule FRET microscopy software. Nat. Methods 12, 593–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Thomsen, J. et al. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9, e60404 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, J., Zhang, L., Johnson-Buck, A. & Walter, N. G. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nat. Commun. 11, 5833 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huisjes, N. M. et al. Mars, a molecule archive suite for reproducible analysis and reporting of single-molecule properties from bioimages. eLife 11, e75899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wanninger, S. et al. Deep-LASI: deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami structures. Nat. Commun. 14, 6564 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCann, J. J., Choi, U. B., Zheng, L., Weninger, K. & Bowen, M. E. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophys. J. 99, 961–970 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dimura, M. et al. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40, 163–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verma, A. R. et al. Increasing the accuracy of single-molecule data analysis using tMAVEN. Biophys. J. https://doi.org/10.1016/j.bpj.2024.01.022 (2024).

  71. van de Meent, J. W., Bronson, J. E., Wiggins, C. H. & Gonzalez, R. L. Jr Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys. J. 106, 1327–1337 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kinz-Thompson, C. D. & Gonzalez, R. L. Jr Increasing the time resolution of single-molecule experiments with Bayesian inference. Biophys. J. 114, 289–300 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, S. E., Lee, I. B., Hyeon, C. & Hong, S. C. Deciphering kinetic information from single-molecule FRET data that show slow transitions. J. Phys. Chem. B 119, 6974–6978 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Schmid, S., Gotz, M. & Hugel, T. Single-molecule analysis beyond dwell times: demonstration and assessment in and out of equilibrium. Biophys. J. 111, 1375–1384 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hon, J. & Gonzalez, R. L. Jr Bayesian-estimated hierarchical HMMs enable robust analysis of single-molecule kinetic heterogeneity. Biophys. J. 116, 1790–1802 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sgouralis, I. et al. A Bayesian nonparametric approach to single molecule forster resonance energy transfer. J. Phys. Chem. B 123, 675–688 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bronson, J. E., Fei, J., Hofman, J. M., Gonzalez, R. L. Jr & Wiggins, C. H. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97, 3196–3205 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nagl, S. et al. Microarray analysis of protein–protein interactions based on FRET using subnanosecond-resolved fluorescence lifetime imaging. Biosens. Bioelectron. 24, 397–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Sisamakis, E., Valeri, A., Kalinin, S., Rothwell, P. J. & Seidel, C. A. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol. 475, 455–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Knop, J. M., Patra, S., Harish, B., Royer, C. A. & Winter, R. The deep sea osmolyte trimethylamine N-oxide and macromolecular crowders rescue the antiparallel conformation of the human telomeric G-quadruplex from urea and pressure stress. Chemistry 24, 14346–14351 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Gopich, I. V. & Szabo, A. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc. Natl Acad. Sci. USA 109, 7747–7752 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Margineanu, A. et al. Screening for protein–protein interactions using Forster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM). Sci. Rep. 6, 28186 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. George Abraham, B. et al. Fluorescent protein based FRET pairs with improved dynamic range for fluorescence lifetime measurements. PLoS ONE 10, e0134436 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Becker, W. Fluorescence lifetime imaging—techniques and applications. J. Microsc. 247, 119–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Levitt, J. A. et al. Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM. Sci. Rep. 10, 5146 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reissaus, C. A. et al. PIE-FLIM measurements of two different FRET-based biosensor activities in the same living cells. Biophys. J. 118, 1820–1829 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Torella, J. P., Holden, S. J., Santoso, Y., Hohlbein, J. & Kapanidis, A. N. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophys. J. 100, 1568–1577 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tomov, T. E. et al. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophys. J. 102, 1163–1173 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalinin, S., Valeri, A., Antonik, M., Felekyan, S. & Seidel, C. A. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114, 7983–7995 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Chung, H. S. & Eaton, W. A. Protein folding transition path times from single molecule FRET. Curr. Opin. Struct. Biol. 48, 30–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Pirchi, M. et al. Photon-by-photon hidden Markov model analysis for microsecond single-molecule FRET kinetics. J. Phys. Chem. B 120, 13065–13075 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Keller, B. G., Kobitski, A., Jaschke, A., Nienhaus, G. U. & Noe, F. Complex RNA folding kinetics revealed by single-molecule FRET and hidden Markov models. J. Am. Chem. Soc. 136, 4534–4543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Felekyan, S., Sanabria, H., Kalinin, S., Kuhnemuth, R. & Seidel, C. A. Analyzing Forster resonance energy transfer with fluctuation algorithms. Methods Enzymol. 519, 39–85 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Gurunathan, K. & Levitus, M. FRET fluctuation spectroscopy of diffusing biopolymers: contributions of conformational dynamics and translational diffusion. J. Phys. Chem. B 114, 980–986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schuler, B. Perspective: chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. J. Chem. Phys. 149, 010901 (2018).

    Article  ADS  PubMed  Google Scholar 

  96. Nettels, D., Gopich, I. V., Hoffmann, A. & Schuler, B. Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl Acad. Sci. USA 104, 2655–2660 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yoo, J., Kim, J. Y., Louis, J. M., Gopich, I. V. & Chung, H. S. Fast three-color single-molecule FRET using statistical inference. Nat. Commun. 11, 3336 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ingargiola, A. et al. Multispot single-molecule FRET: high-throughput analysis of freely diffusing molecules. PLoS ONE 12, e0175766 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ingargiola, A., Weiss, S. & Lerner, E. Monte Carlo diffusion-enhanced photon inference: distance distributions and conformational dynamics in single-molecule FRET. J. Phys. Chem. B 122, 11598–11615 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Nagy, P. et al. rFRET: a comprehensive, MATLAB-based program for analyzing intensity-based ratiometric microscopic FRET experiments. Cytometry A 89, 376–384 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Widengren, J. et al. Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal. Chem. 78, 2039–2050 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, N. K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939–2953 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Margeat, E. et al. Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys. J. 90, 1419–1431 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Frank, J. & Gonzalez, R. L. Jr Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu. Rev. Biochem. 79, 381–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fan, J., Moreno, A. T., Baier, A. S., Loparo, J. J. & Peterson, C. L. H2A.Z deposition by SWR1C involves multiple ATP-dependent steps. Nat. Commun. 13, 7052 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, e35322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Evans, G. W., Craggs, T. & Kapanidis, A. N. The rate-limiting step of DNA synthesis by DNA polymerase occurs in the fingers-closed conformation. J. Mol. Biol. 434, 167410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Berezhna, S. Y., Gill, J. P., Lamichhane, R. & Millar, D. P. Single-molecule Forster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. J. Am. Chem. Soc. 134, 11261–11268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, D., Oh, S., Cho, H., Yoo, J. & Lee, G. Mechanistic decoupling of exonuclease III multifunctionality into AP endonuclease and exonuclease activities at the single-residue level. Nucleic Acids Res. 50, 2211–2222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reid, D. A. et al. Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc. Natl Acad. Sci. USA 112, E2575–E2584 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Singh, D., Sternberg, S. H., Fei, J., Doudna, J. A. & Ha, T. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7, 12778 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, M. et al. The conformational dynamics of Cas9 governing DNA cleavage are revealed by single-molecule FRET. Cell Rep. 22, 372–382 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Osuka, S. et al. Real-time observation of flexible domain movements in CRISPR–Cas9. EMBO J. 37, e96941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chakraborty, A. et al. Opening and closing of the bacterial RNA polymerase clamp. Science 337, 591–595 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song, E. et al. Rho-dependent transcription termination proceeds via three routes. Nat. Commun. 13, 1663 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Abelson, J. et al. Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat. Struct. Mol. Biol. 17, 504–512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rodgers, M. L. et al. Conformational dynamics of stem II of the U2 snRNA. RNA 22, 225–236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roca, J., Santiago-Frangos, A. & Woodson, S. A. Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nat. Commun. 13, 2449 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J. & Joo, C. A dynamic search process underlies microRNA targeting. Cell 162, 96–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fei, J., Kosuri, P., MacDougall, D. D. & Gonzalez, R. L. Jr. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30, 348–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Lapointe, C. P. et al. eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Nature 607, 185–190 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ray, K. K. et al. Entropic control of the free-energy landscape of an archetypal biomolecular machine. Proc. Natl Acad. Sci. USA 120, e2220591120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mazal, H., Iljina, M., Riven, I. & Haran, G. Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. Sci. Adv. 7, eabg4674 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhuang, X. et al. Correlating structural dynamics and function in single ribozyme molecules. Science 296, 1473–1476 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  126. Liao, T. W. et al. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level. Nucleic Acids Res. 51, 8957–8969 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schuler, B., Lipman, E. A. & Eaton, W. A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419, 743–747 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Kim, J. Y. & Chung, H. S. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 368, 1253–1257 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zamel, J. et al. Structural and dynamic insights into α-synuclein dimer conformations. Structure 31, 411–423.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature 619, 876–883 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Okafor, I. C. & Ha, T. Single molecule FRET analysis of CRISPR–Cas9 single guide RNA folding dynamics. J. Phys. Chem. B 127, 45–51 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Trucks, S., Hanspach, G. & Hengesbach, M. Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs. Nucleic Acids Res. 49, 4629–4642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim, H. et al. Protein-guided RNA dynamics during early ribosome assembly. Nature 506, 334–338 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Duss, O. et al. Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts. Nat. Commun. 9, 5087 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  135. Marzano, N. R., Paudel, B. P., van Oijen, A. M. & Ecroyd, H. Real-time single-molecule observation of chaperone-assisted protein folding. Sci. Adv. 8, eadd0922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chamachi, N. et al. Chaperones Skp and SurA dynamically expand unfolded OmpX and synergistically disassemble oligomeric aggregates. Proc. Natl Acad. Sci. USA 119, e2118919119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dahiya, V. et al. Coordinated conformational processing of the tumor suppressor protein p53 by the Hsp70 and Hsp90 chaperone machineries. Mol. Cell 74, 816–830.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Schmid, S. & Hugel, T. Controlling protein function by fine-tuning conformational flexibility. eLife 9, e57180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Levring, J. et al. CFTR function, pathology and pharmacology at single-molecule resolution. Nature 616, 606–614 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Han, S. et al. Cholesterol inhibits human voltage-gated proton channel hHv1. Proc. Natl Acad. Sci. USA 119, e2205420119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, S., Vafabakhsh, R., Borschel, W. F., Ha, T. & Nichols, C. G. Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Nat. Struct. Mol. Biol. 23, 31–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Zhao, Y. et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474, 109–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ciftci, D. et al. Linking function to global and local dynamics in an elevator-type transporter. Proc. Natl Acad. Sci. USA 118, e2025520118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhu, L. et al. Realtime observation of ATP-driven single B12 molecule translocation through BtuCD-F. Preprint at bioRxiv https://doi.org/10.1101/2022.12.02.518935 (2022).

  145. Vafabakhsh, R., Levitz, J. & Isacoff, E. Y. Conformational dynamics of a class C G-protein-coupled receptor. Nature 524, 497–501 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, T., Khanal, S., Hertslet, G. D. & Lamichhane, R. Single-molecule analysis reveals that a glucagon-bound extracellular domain of the glucagon receptor is dynamic. J. Biol. Chem. 299, 105160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Heng, J. et al. Function and dynamics of the intrinsically disordered carboxyl terminus of β2-adrenergic receptor. Nat. Commun. 14, 2005 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liauw, B. W., Afsari, H. S. & Vafabakhsh, R. Conformational rearrangement during activation of a metabotropic glutamate receptor. Nat. Chem. Biol. 17, 291–297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lecat-Guillet, N. et al. Concerted conformational changes control metabotropic glutamate receptor activity. Sci. Adv. 9, eadf1378 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Landes, C. F., Rambhadran, A., Taylor, J. N., Salatan, F. & Jayaraman, V. Structural landscape of isolated agonist-binding domains from single AMPA receptors. Nat. Chem. Biol. 7, 168–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Asher, W. B. et al. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Cell 185, 1661–1675.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Diaz-Salinas, M. A. et al. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. eLife 11, e75433 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Munro, J. B. et al. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346, 759–763 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ngo, T. T., Zhang, Q., Zhou, R., Yodh, J. G. & Ha, T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160, 1135–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ngo, T. T. M. et al. Dependence of nucleosome mechanical stability on DNA mismatches and histone variants. Preprint at bioRxiv https://doi.org/10.1101/2022.11.21.517409 (2022).

  156. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gotz, M. et al. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat. Commun. 13, 5402 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  159. Agam, G. et al. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat. Methods 20, 523–535 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  161. Ambrose, B. et al. The smfBox is an open-source platform for single-molecule FRET. Nat. Commun. 11, 5641 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rueden, C. T. et al. ImageJ2: imageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Greenfeld, M. et al. Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data. BMC Bioinformatics 16, 3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Vallat, B., Webb, B., Westbrook, J. D., Sali, A. & Berman, H. M. Development of a prototype system for archiving integrative/hybrid structure models of biological macromolecules. Structure 26, 894–904.e2 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rasnik, I., McKinney, S. A. & Ha, T. Nonblinking and long-lasting single-molecule fluorescence imaging. Nat. Methods 3, 891–893 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Bates, M., Blosser, T. R. & Zhuang, X. Short-range spectroscopic ruler based on a single-molecule optical switch. Phys. Rev. Lett. 94, 108101 (2005).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  167. Arseni, C. et al. Time-related variations of some biochemical parameters in patients with short- or long-lasting post-traumatic coma. Rom. J. Neurol. Psychiatry 28, 209–223 (1990).

    CAS  PubMed  Google Scholar 

  168. Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A. & Yildiz, A. A conformational checkpoint between DNA binding and cleavage by CRISPR–Cas9. Sci. Adv. 3, eaao0027 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Wang, Y. et al. Real-time observation of Cas9 postcatalytic domain motions. Proc. Natl Acad. Sci. USA 118, e2010650118 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Grimm, J. B. et al. A general method to improve fluorophores using deuterated auxochromes. JACS Au 1, 690–696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kim, J. M. et al. Dynamic 1D search and processive nucleosome translocations by RSC and ISW2 chromatin remodelers. Preprint at bioRxiv https://doi.org/10.1101/2023.06.13.544671 (2023).

  172. Lang, M. J., Fordyce, P. M., Engh, A. M., Neuman, K. C. & Block, S. M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gebhardt, C. et al. Labelizer: systematic selection of protein residues for covalent fluorophore labeling. Preprint at bioRxiv https://doi.org/10.1101/2023.06.12.544586 (2023).

  174. Shi, X., Lim, J. & Ha, T. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal. Chem. 82, 6132–6138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Okumus, B., Wilson, T. J., Lilley, D. M. & Ha, T. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys. J. 87, 2798–2806 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chung, H. S. et al. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein. J. Phys. Chem. A 115, 3642–3656 (2011).

    Article  CAS  PubMed  Google Scholar 

  177. Chen, J. et al. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence. Proc. Natl Acad. Sci. USA 111, 664–669 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  178. Cisse, I. I., Kim, H. & Ha, T. A rule of seven in Watson–Crick base-pairing of mismatched sequences. Nat. Struct. Mol. Biol. 19, 623–627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sanabria, H. et al. Resolving dynamics and function of transient states in single enzyme molecules. Nat. Commun. 11, 1231 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hellenkamp, B., Wortmann, P., Kandzia, F., Zacharias, M. & Hugel, T. Multidomain structure and correlated dynamics determined by self-consistent FRET networks. Nat. Methods 14, 174–180 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Soranno, A. et al. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc. Natl Acad. Sci. USA 114, E1833–E1839 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen, J. et al. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. Structure 29, 1048–1064.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Trofymchuk, K. et al. Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope. Nat. Commun. 12, 950 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Holzmeister, P., Acuna, G. P., Grohmann, D. & Tinnefeld, P. Breaking the concentration limit of optical single-molecule detection. Chem. Soc. Rev. 43, 1014–1028 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mao, C. P. et al. Protein detection in blood with single-molecule imaging. Sci Adv 7, eabg6522 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hartmann, A. et al. An automated single-molecule FRET platform for high-content, multiwell plate screening of biomolecular conformations and dynamics. Nat. Commun. 14, 6511 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  188. Severins, I., Joo, C. & van Noort, J. Exploring molecular biology in sequence space: the road to next-generation single-molecule biophysics. Mol. Cell 82, 1788–1805 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Pati, A. K. et al. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc. Natl Acad. Sci. USA 117, 24305–24315 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Isselstein, M. et al. Self-healing dyes—keeping the promise? J. Phys. Chem. Lett. 11, 4462–4480 (2020).

    Article  CAS  PubMed  Google Scholar 

  191. Zhang, Y. et al. General strategy to improve the photon budget of thiol-conjugated cyanine dyes. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.2c12635 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sow, M. et al. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. Nanoscale 12, 21821–21831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Glushkov, E. et al. Engineering optically active defects in hexagonal boron nitride using focused ion beam and water. ACS Nano 16, 3695–3703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Vermeer, B. & Schmid, S. Can DyeCycling break the photobleaching limit in single-molecule FRET? Nano Res. 15, 9818–9830 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  195. Kummerlin, M., Mazumder, A. & Kapanidis, A. N. Bleaching-resistant, near-continuous single-molecule fluorescence and FRET based on fluorogenic and transient DNA binding. Chemphyschem 24, e202300175 (2023).

    Article  PubMed  Google Scholar 

  196. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  197. Albitz, E. et al. Bioorthogonal ligation-activated fluorogenic FRET dyads. Angew. Chem. Int. Ed. 61, e202111855 (2022).

    Article  CAS  Google Scholar 

  198. Ploetz, E. et al. Forster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Sci. Rep. 6, 33257 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  199. Qiu, Y. et al. Srs2 prevents Rad51 filament formation by repetitive motion on DNA. Nat. Commun. 4, 2281 (2013).

    Article  ADS  PubMed  Google Scholar 

  200. Schubert, J., Schulze, A., Prodromou, C. & Neuweiler, H. Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics. Nat. Commun. 12, 6964 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  201. Schmid, S., Stommer, P., Dietz, H. & Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nat. Nanotechnol. 16, 1244–1250 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  202. Tang, L. et al. Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nat. Commun. 12, 913 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gordon, R. Future prospects for biomolecular trapping with nanostructured metals. ACS Photonics 9, 1127–1135 (2022).

    Article  CAS  Google Scholar 

  204. Hou, S., Exell, J. & Welsher, K. Real-time 3D single molecule tracking. Nat. Commun. 11, 3607 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  205. Dyla, M. et al. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature 551, 346–351 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang, J. et al. Specific structural elements of the T-box riboswitch drive the two-step binding of the tRNA ligand. eLife 7, e39518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Hildebrandt, L. L., Preus, S. & Birkedal, V. Quantitative single molecule FRET efficiencies using TIRF microscopy. Faraday Discuss. 184, 131–142 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institutes of Health (NIH) for funding (R35 GM 122569 to T.H.) and the National Research Foundation of Korea (NRF-2023R1A2C2006606 to N.K.L.). T.H. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.H.); Experimentation (T.H., N.K.L. and S.Y.); Results (T.H., J.F. and S.P.); Applications (T.H. and R.L.G.); Reproducibility and data deposition (T.H. and S.S.); Limitations and optimizations (T.H.); Outlook (T.H. and S.S.); Overview of the Primer (T.H.).

Corresponding author

Correspondence to Taekjip Ha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

µManager: https://micro-manager.org

Single: https://github.com/pjb7687/single

smCamera: https://github.com/Ha-SingleMoleculeLab/smCamera2

Glossary

Dwell times

Durations of time that single molecules spend in a specific fluorescence resonance energy transfer (FRET) state before transitioning to a different FRET state or photobleaching.

Excitation volume

The spatial region of the excitation laser around an imaged object in which impurities and background fluorophores may also be excited.

FRET states

Compositional or conformational states of a biomolecule that are distinguished by their fluorescence resonance energy transfer (FRET) efficiencies.

Multi-colour smFRET

Single-molecule fluorescence resonance energy transfer (smFRET) using three or more fluorophores with distinct emission colours, allowing the simultaneous monitoring of multiple energy transfer events.

Photobleaching

A photochemical reaction between the excited electronic state of a fluorophore and molecular oxygen (O2) that destroys the fluorophore and manifests as a single-step decrease in the emission signal of a single fluorophore to the background level.

Photon budgets

The number of photons detected from a single fluorophore until photobleaching.

Triplet-state blinking

Turning off and on of a single fluorophore caused by transitions to and from a triplet electronic state, respectively.

Two-colour smFRET

The most common implementation of single-molecule fluorescence resonance energy transfer (smFRET), involving a single donor and a single acceptor fluorophore of distinct emission colours.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, T., Fei, J., Schmid, S. et al. Fluorescence resonance energy transfer at the single-molecule level. Nat Rev Methods Primers 4, 21 (2024). https://doi.org/10.1038/s43586-024-00298-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00298-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing