Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs

Abstract

miRNA-mediated repression in animals is dependent on the GW182 protein family. GW182 proteins are recruited to the miRNA repression complex through direct interaction with Argonaute proteins, and they function downstream to repress target mRNA. Here we demonstrate that in human and Drosophila melanogaster cells, the critical repressive features of both the N-terminal and C-terminal effector domains of GW182 proteins are Gly/Ser/Thr-Trp (G/S/TW) or Trp-Gly/Ser/Thr (WG/S/T) motifs. These motifs, which are dispersed across both domains and act in an additive manner, function by recruiting components of the CCR4–NOT deadenylation complex. A heterologous yeast polypeptide with engineered WG/S/T motifs acquired the ability to repress tethered mRNA and to interact with the CCR4–NOT complex. These results identify previously unknown effector motifs functioning as important mediators of miRNA-induced silencing in both species, and they reveal that recruitment of the CCR4–NOT complex by tryptophan-containing motifs acts downstream of GW182 to repress mRNAs, including inhibiting translation independently of deadenylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TNRC6C CED interacts with components of the CCR4–NOT complex.
Figure 2: W-motifs in GW182 proteins mediate mRNA repression by recruiting CCR4–NOT and PAN2–PAN3 deadenylation complexes.
Figure 3: W-motifs present in the dGW182 NED and the engineered yeast protein fragment repress tethered mRNA and recruit components of CCR4–NOT.
Figure 4: W-motifs are necessary for repression by full-length GW182 and function in bona fide miRNA repression.
Figure 5: The CED W-motifs and CCR4–NOT complex contribute to repression of poly(A) mRNAs in fly cells.
Figure 6: Repression of poly(A) RNA by tethering dGW182 or its fragments depends on NOT1, but repression by tethered CCR4–NOT components is dGW182-independent.

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  2. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).

    Article  CAS  Google Scholar 

  3. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  Google Scholar 

  4. Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).

    Article  CAS  Google Scholar 

  5. Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15, 794–803 (2009).

    Article  CAS  Google Scholar 

  6. Eulalio, A. et al. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res. 37, 2974–2983 (2009).

    Article  CAS  Google Scholar 

  7. Zekri, L., Huntzinger, E., Heimstadt, S. & Izaurralde, E. The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of miRNA targets and is required for target release. Mol. Cell. Biol. 23, 6220–6231 (2009).

    Article  Google Scholar 

  8. Huntzinger, E., Braun, J.E., Heimstadt, S., Zekri, L. & Izaurralde, E. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO J. 29, 4146–4160 (2010).

    Article  CAS  Google Scholar 

  9. Zipprich, J.T., Bhattacharyya, S., Mathys, H. & Filipowicz, W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15, 781–793 (2009).

    Article  CAS  Google Scholar 

  10. Lazzaretti, D., Tournier, I. & Izaurralde, E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 15, 1059–1066 (2009).

    Article  CAS  Google Scholar 

  11. Baillat, D. & Shiekhattar, R. Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol. Cell. Biol. 29, 4144–4155 (2009).

    Article  CAS  Google Scholar 

  12. Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    Article  CAS  Google Scholar 

  13. Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N. & Doudna, J.A. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. 17, 238–240 (2010).

    Article  CAS  Google Scholar 

  14. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    Article  CAS  Google Scholar 

  15. Chen, C.Y., Zheng, D., Xia, Z. & Shyu, A.B. Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat. Struct. Mol. Biol. 16, 1160–1166 (2009).

    Article  CAS  Google Scholar 

  16. Piao, X., Zhang, X., Wu, L. & Belasco, J.G. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol. Cell. Biol. 30, 1486–1494 (2010).

    Article  CAS  Google Scholar 

  17. Chekulaeva, M., Parker, R. & Filipowicz, W. The GW/WG repeats of Drosophila GW182 function as effector motifs for miRNA-mediated repression. Nucleic Acids Res. 38, 6673–6683 (2010).

    Article  CAS  Google Scholar 

  18. Yao, B. et al. Divergent GW182 functional domains in the regulation of translational silencing. Nucleic Acids Res. 39, 2534–2547 (2011).

    Article  CAS  Google Scholar 

  19. Ezzeddine, N. et al. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Mol. Cell. Biol. 27, 7791–7801 (2007).

    Article  CAS  Google Scholar 

  20. Siddiqui, N. et al. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J. Biol. Chem. 282, 25067–25075 (2007).

    Article  CAS  Google Scholar 

  21. Mittag, T. et al. Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18, 494–506 (2010).

    Article  CAS  Google Scholar 

  22. Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. & Izaurralde, E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15, 1067–1077 (2009).

    Article  CAS  Google Scholar 

  23. Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052–1060 (2007).

    Article  Google Scholar 

  24. Mayr, C., Hemann, M.T. & Bartel, D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    Article  CAS  Google Scholar 

  25. Eulalio, A. et al. Deadenylation is a widespread effect of miRNA regulation. RNA 15, 21–32 (2009).

    Article  CAS  Google Scholar 

  26. Collart, M.A. & Timmers, H.T. The eukaryotic Ccr4-not complex: a regulatory platform integrating mRNA metabolism with cellular signaling pathways? Prog. Nucleic Acid Res. Mol. Biol. 77, 289–322 (2004).

    Article  CAS  Google Scholar 

  27. Fabian, M.R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat. Struct. Mol. Biol. 10.1038/nsmb.2149 (published online 7 Oct 2011).

  28. Thickman, K.R., Swenson, M.C., Kabogo, J.M., Gryczynski, Z. & Kielkopf, C.L. Multiple U2AF65 binding sites within SF3b155: thermodynamic and spectroscopic characterization of protein-protein interactions among pre-mRNA splicing factors. J. Mol. Biol. 356, 664–683 (2006).

    Article  CAS  Google Scholar 

  29. Cooke, A., Prigge, A. & Wickens, M. Translational repression by deadenylases. J. Biol. Chem. 285, 28506–28513 (2010).

    Article  CAS  Google Scholar 

  30. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A. & Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717–1727 (2001).

    Article  CAS  Google Scholar 

  31. Temme, C. et al. Subunits of the Drosophila CCR4-NOT complex and their roles in mRNA deadenylation. RNA 16, 1356–1370 (2010).

    Article  CAS  Google Scholar 

  32. Chu, C.Y. & Rana, T.M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    Article  Google Scholar 

  33. Barbee, S.A. et al. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997–1009 (2006).

    Article  CAS  Google Scholar 

  34. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570 (2007).

    Article  CAS  Google Scholar 

  35. Glavan, F., Behm-Ansmant, I., Izaurralde, E. & Conti, E. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J. 25, 5117–5125 (2006).

    Article  CAS  Google Scholar 

  36. Weidenfeld, I. et al. Inducible expression of coding and inhibitory RNAs from retargetable genomic loci. Nucleic Acids Res. 37, e50 (2009).

    Article  Google Scholar 

  37. Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8, 1052–1060 (2007).

    Article  Google Scholar 

  38. Mayr, C., Hemann, M.T. & Bartel, D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    Article  CAS  Google Scholar 

  39. Chekulaeva, M., Filipowicz, W. & Parker, R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15, 794–803 (2009).

    Article  CAS  Google Scholar 

  40. Fabian, M.R. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Collart (University of Geneva), A.-B. Shyu (University of Texas Medical School), H.T.M. Timmers (University of Utrecht), E. Izaurralde (Max Planck Institute for Developmental Biology), N. Sonenberg (McGill University), K. Schönig (Zentralinstitut für Seelische Gesundheit), J. Bethune (Friedrich Miescher Institute (FMI)), E. Wahle (Martin Luther University, Halle) and T. Yamamoto (University of Tokyo) for reagents; R. Sack, D. Klei, and the FMI Protein Analysis Facility for MS analysis; M. Tsai for help with the Y2H assay; and H. Gut, I. Loedige, J. Krol, J. Bethune, M. de la Mata, N. Thoma, F. Allain, E. Izaurralde and N. Sonenberg for stimulating discussions. M. Chekulaeva is the recipient of long-term postdoctoral fellowships from the Human Frontiers Science Program and Engelhorn Stiftung. J.A. is funded by the German National Academic Foundation. R.P. is supported by funds from the Howard Hughes Medical Institute. This work was supported by the European Community FP6 Program 'Sirocco'. The FMI is supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M. Chekulaeva, H.M., J.T.Z., J.A., M. Colic, R.P. and W.F. designed the experiments. M. Chekulaeva, H.M., J.T.Z., J.A. and M. Colic conducted the experiments. M. Chekulaeva, H.M., R.P. and W.F. wrote the manuscript.

Corresponding author

Correspondence to Witold Filipowicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1, Supplementary Results and Supplementary Methods (PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chekulaeva, M., Mathys, H., Zipprich, J. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat Struct Mol Biol 18, 1218–1226 (2011). https://doi.org/10.1038/nsmb.2166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2166

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing