Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans

Abstract

The highly conserved let-7 microRNA (miRNA) regulates developmental pathways across animal phyla. Mis-expression of let-7 causes lethality in C. elegans and has been associated with several human diseases. We show that timing of let-7 expression in developing worms is under complex transcriptional and post-transcriptional control. Expression of let-7 primary transcripts oscillates during each larval stage, but precursor and mature let-7 miRNAs do not accumulate until later in development after LIN-28 protein has diminished. We demonstrate that LIN-28 binds endogenous primary let-7 transcripts co-transcriptionally. We further show that LIN-28 binds endogenous primary let-7 transcripts in the nuclear compartment of human ES cells, suggesting that this LIN-28 activity is conserved across species. We conclude that co-transcriptional interaction of LIN-28 with let-7 primary transcripts blocks Drosha processing and, thus, precocious expression of mature let-7 during early development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of let-7 is transcriptionally and post-transcriptionally regulated.
Figure 2: Developmentally regulated processing of let-7 pri-miRNA transcripts.
Figure 3: Regulation of let-7 processing by LIN-28.
Figure 4: LIN-28 binds endogenous let-7 primary transcripts in C. elegans and human ES cells.
Figure 5: LIN-28 binds endogenous let-7 genomic DNA.

Similar content being viewed by others

References

  1. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  2. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  3. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  Google Scholar 

  4. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  Google Scholar 

  5. Büssing, I., Slack, F.J. & Grosshans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008).

    Article  Google Scholar 

  6. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  Google Scholar 

  7. Bracht, J., Hunter, S., Eachus, R., Weeks, P. & Pasquinelli, A.E. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10, 1586–1594 (2004).

    Article  CAS  Google Scholar 

  8. Lehrbach, N.J. et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 16, 1016–1020 (2009).

    Article  CAS  Google Scholar 

  9. Moss, E.G., Lee, R.C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997).

    Article  CAS  Google Scholar 

  10. Moss, E.G. & Tang, L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 258, 432–442 (2003).

    Article  CAS  Google Scholar 

  11. Guo, Y. et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384, 51–61 (2006).

    Article  CAS  Google Scholar 

  12. Balzer, E., Heine, C., Jiang, Q., Lee, V.M. & Moss, E.G. LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development 137, 891–900 (2010).

    Article  CAS  Google Scholar 

  13. Balzer, E. & Moss, E.G. Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol. 4, 16–25 (2007).

    Article  CAS  Google Scholar 

  14. Seggerson, K., Tang, L. & Moss, E.G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002).

    Article  CAS  Google Scholar 

  15. Morita, K. & Han, M. Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans. EMBO J. 25, 5794–5804 (2006).

    Article  CAS  Google Scholar 

  16. Viswanathan, S.R., Daley, G.Q. & Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  Google Scholar 

  17. Newman, M.A., Thomson, J.M. & Hammond, S.M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    Article  CAS  Google Scholar 

  18. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  Google Scholar 

  19. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  Google Scholar 

  20. Hagan, J.P., Piskounova, E. & Gregory, R.I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025 (2009).

    Article  CAS  Google Scholar 

  21. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    Article  CAS  Google Scholar 

  22. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  Google Scholar 

  23. Johnson, S.M., Lin, S.Y. & Slack, F.J. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 259, 364–379 (2003).

    Article  CAS  Google Scholar 

  24. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  Google Scholar 

  25. Esquela-Kerscher, A. et al. Post-embryonic expression of C. elegans microRNAs belonging to the lin-4 and let-7 families in the hypodermis and the reproductive system. Dev. Dyn. 234, 868–877 (2005).

    Article  CAS  Google Scholar 

  26. Martinez, N.J. et al. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 18, 2005–2015 (2008).

    Article  CAS  Google Scholar 

  27. Qiu, C., Ma, Y., Wang, J., Peng, S. & Huang, Y. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res. 38, 1240–1248 (2010).

    Article  CAS  Google Scholar 

  28. Suh, M.R. et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498 (2004).

    Article  CAS  Google Scholar 

  29. Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632–5638 (2009).

    Article  CAS  Google Scholar 

  30. Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).

    Article  CAS  Google Scholar 

  31. Pawlicki, J.M. & Steitz, J.A. Subnuclear compartmentalization of transiently expressed polyadenylated pri-microRNAs: processing at transcription sites or accumulation in SC35 foci. Cell Cycle 8, 345–356 (2009).

    Article  CAS  Google Scholar 

  32. Celniker, S.E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).

    Article  CAS  Google Scholar 

  33. Michlewski, G. & Caceres, J.F. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat. Struct. Mol. Biol. 17, 1011–1018 (2010).

    Article  CAS  Google Scholar 

  34. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009).

    Article  CAS  Google Scholar 

  35. Viswanathan, S.R. & Daley, G.Q. Lin28: A microRNA regulator with a macro role. Cell 140, 445–449 (2010).

    Article  CAS  Google Scholar 

  36. Bussing, I., Yang, J.S., Lai, E.C. & Grosshans, H. The nuclear export receptor XPO-1 supports primary miRNA processing in C. elegans and Drosophila. EMBO J. 29, 1830–1839 (2010).

    Article  Google Scholar 

  37. Wood, W. The Nematode Caenorhabditis elegans (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1988).

  38. Cowan, C.A. et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353–1356 (2004).

    Article  CAS  Google Scholar 

  39. Gondran, P., Amiot, F., Weil, D. & Dautry, F. Accumulation of mature mRNA in the nuclear fraction of mammalian cells. FEBS Lett. 458, 324–328 (1999).

    Article  CAS  Google Scholar 

  40. Mukhopadhyay, A., Deplancke, B., Walhout, A.J. & Tissenbaum, H.A. Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat. Protoc. 3, 698–709 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Lykke-Andersen (Univ. California, San Diego (UCSD)) and members of the Pasquinelli laboratory for their suggestions and critical reading of this manuscript. We thank E. Moss (Univ. Medicine and Dentistry of New Jersey) for providing the plin-28:LIN-28:GFP strain, R. Gassmann and A. Desai (UCSD) for providing the polyclonal antibody to GFP, M. Li and M. David (UCSD) for sharing their real-time PCR machine, and the Caenorhabditis Genetics Center for worm strains. P.M.V.W. was supported by a Ruth L. Kirschstein National Research Service Award (F32GM087004) from the US National Institute of General Medical Sciences. Z.S.K. was supported by a US National Institutes of Health (NIH) Cellular and Molecular Genetics and NIH/National Cancer Institute T32 CA009523 Graduate Student Training Grants. V.H.B. was supported by a UCSD Chancellor's Undergraduate Research Scholarship. This work was funded by the NIH (GM071654), the Keck, Searle, V., Emerald and Peter Gruber Foundations (A.E.P.) and by the California Institute of Regenerative Medicine (RB1-01413) and the Stem Cell Program at UCSD (G.W.Y.).

Author information

Authors and Affiliations

Authors

Contributions

A.E.P. and P.M.V. designed the project and wrote the paper; P.M.V. (all figures), Z.S.K. (Fig. 1 and Supplementary Fig. 1), K.B.M. (Fig. 4) and V.H.B. (Fig. 4) performed the experiments; A.E.P. and G.W.Y. supervised the studies.

Corresponding author

Correspondence to Amy E Pasquinelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–4 and Supplementary Methods (PDF 1257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Wynsberghe, P., Kai, Z., Massirer, K. et al. LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nat Struct Mol Biol 18, 302–308 (2011). https://doi.org/10.1038/nsmb.1986

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing