Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging and evaluation of patients with high-risk prostate cancer

Key Points

  • Imaging high-risk prostate cancer is predominantly conducted using radionuclide bone scan, CT, and MRI

  • Multiparametric-MRI (mpMRI) and positron emission tomography (PET)–CT, using novel imaging techniques and radiopharmaceuticals, are currently being investigated and incorporated into clinical use

  • mpMRI and PET–CT are more advanced approaches than conventional techniques and offer improved sensitivity and specificity, enabling more accurate assessment of disease

  • Integrated PET–MRI could provide a comprehensive assessment of local disease extent, lymph nodes, and bones, as well as functional assessment of tumour aggressiveness and prognosis

  • Continued studies are warranted to further establish the role of new modalities in the management of patients with high-risk prostate cancer

Abstract

Approximately 15% of men with newly diagnosed prostate cancer have high-risk disease. Imaging is critically important for the diagnosis and staging of these patients, and also for the selection of management. While established prostate cancer staging guidelines have increased the appropriate use of imaging, underuse for high-risk prostate cancer remains substantial. Several factors affect the utility of initial diagnostic imaging, including the variable definition of high-risk prostate cancer, variable guideline recommendations, poor accuracy of existing imaging tests, and the difficulty in validating imaging findings. Conventional imaging modalities, including CT and radionuclide bone scan, have been employed for local and metastatic staging, but their performance characteristics have generally been poor. Emerging modalities including multiparametricMRI, positron emission tomography (PET)–CT, and PET–MRI have shown increased diagnostic accuracy and could improve accuracy in staging patients with high-risk prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An algorithm for imaging patients with high-risk prostate cancer.
Figure 2: Assessment of extraprostatic extension on multiparametricMRI.
Figure 3: Assesment of seminal vesicle involvement evaluated using multiparametic-MRI.
Figure 4: 18F-PET–CT for initial staging of prostate cancer in a newly diagnosed 70 year old with a serum PSA level of 73.6 ng/ml, demonstrating focal uptake in the left aspect of the prostate gland that is consistent with the primary tumour.
Figure 5: Initial prostate cancer staging using 18F-choline-PET–CT, demonstrating focal uptake within a 5 mm right external iliac lymph node (arrow), consistent with a nodal metastasis, in a 70-year-old patient with newly diagnosed prostate cancer and serum PSA level of 73.6 ng/ml.
Figure 6: Initial staging workup showing metastatic disease to bone in an 85-year-old patient with a de novo non-CRPC diagnosis.
Figure 7: Differentiating metastatic lesions from benign lesions on 18F-NaF-PET–MRI.
Figure 8: Differentiating metastatic lesions from benign lesions on 18F-NaF-PET–MRI.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  2. Cooperberg, M. R., Broering, J. M. & Carroll, P. R. Time trends and local variation in primary treatment of localized prostate cancer. J. Clin. Oncol. 28, 1117–1123 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bastian, P. J. et al. High-risk prostate cancer: from definition to contemporary management. Eur. Urol. 61, 1096–1106 (2012).

    Article  PubMed  Google Scholar 

  4. Brawley, O. W. Trends in prostate cancer in the United States. J. Natl Cancer Inst. Monogr. 2012, 152–156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller, D. C., Hafez, K. S., Stewart, A., Montie, J. E. & Wei, J. T. Prostate carcinoma presentation, diagnosis, and staging: an update form the National Cancer Data Base. Cancer 98, 1169–1178 (2003).

    Article  PubMed  Google Scholar 

  6. Makarov, D. V. et al. Prostate cancer imaging trends after a nationwide effort to discourage inappropriate prostate cancer imaging. J. Natl Cancer Inst. 105, 1306–1313 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Makarov, D. V. et al. The population level prevalence and correlates of appropriate and inappropriate imaging to stage incident prostate cancer in the medicare population. J. Urol. 187, 97–102 (2012).

    Article  PubMed  Google Scholar 

  8. D'Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. NCCN Guidelines Version 1.2015 Prostate Cancer Updates. nccn.org[online].

  10. Roach, M. et al. Four prognostic groups predict long-term survival from prostate cancer following radiotherapy alone on Radiation Therapy Oncology Group clinical trials. Int. J. Radiat. Oncol. Biol. Phys. 47, 609–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Thompson, I. et al. Guideline for the management of clinically localized prostate cancer: 2007 update. J. Urol. 177, 2106–2131 (2007).

    Article  PubMed  Google Scholar 

  12. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol. 59, 61–71 (2011).

    Article  PubMed  Google Scholar 

  13. Horwich, A., Parker, C., de Reijke, T., Kataja, V. & Group, E. G. W. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), vi106–114 (2013).

    PubMed  Google Scholar 

  14. Eberhardt, S. C. et al. ACR Appropriateness Criteria prostate cancer—pretreatment detection, staging, and surveillance. J. Am. Coll. Radiol. 10, 83–92 (2013).

    Article  PubMed  Google Scholar 

  15. European Assoication of Urology Guidelines on prostate cancer. uroweb.org[online]

  16. National Institute for Health and Care Excellence—Prostate cancer: diagnosis and treatment. nice.org.uk[online].

  17. Cooperberg, M. R. et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J. Urol. 173, 1938–1942 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cooperberg, M. R., Broering, J. M. & Carroll, P. R. Risk assessment for prostate cancer metastasis and mortality at the time of diagnosis. J. Natl Cancer Inst. 101, 878–887 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ravery, V. et al. Percentage of cancer on biopsy cores accurately predicts extracapsular extension and biochemical relapse after radical prostatectomy for T1-T2 prostate cancer. Eur. Urol. 37, 449–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. O'Brien, M. F. et al. Pretreatment prostate-specific antigen (PSA) velocity and doubling time are associated with outcome but neither improves prediction of outcome beyond pretreatment PSA alone in patients treated with radical prostatectomy. J. Clin. Oncol. 27, 3591–3597 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hattab, E. M., Koch, M. O., Eble, J. N., Lin, H. & Cheng, L. Tertiary Gleason pattern 5 is a powerful predictor of biochemical relapse in patients with Gleason score 7 prostatic adenocarcinoma. J. Urol. 175, 1695–1699 (2006).

    Article  PubMed  Google Scholar 

  22. NCCN Guidelines for patients: prostate cancer version III. nccn.org[online], (2002).

  23. Prostate-specific antigen (PSA) best practice policy. American Urological Association (AUA). Oncology (Williston Park) 14, 267–272, 277–278, 280 passim (2000).

  24. Abuzallouf, S., Dayes, I. & Lukka, H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J. Urol. 171, 2122–2127 (2004).

    Article  PubMed  Google Scholar 

  25. Prostate cancer guideline for the management of clinically localized prostate cancer: 2007 update. aua.org[online].

  26. Crawford, E. D. et al. Challenges and recommendations for early identification of metastatic disease in prostate cancer. Urology 83, 664–669 (2014).

    Article  PubMed  Google Scholar 

  27. Briganti, A. et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur. Urol. 57, 551–558 (2010).

    Article  PubMed  Google Scholar 

  28. Schnipper, L. E. et al. American Society of Clinical Oncology identifies five key opportunities to improve care and reduce costs: the top five list for oncology. J. Clin. Oncol. 30, 1715–1724 (2012).

    Article  PubMed  Google Scholar 

  29. Makarov, D. H. et al. Regional variation and time trends in prostate cancer imaging utilization among veterans with incident disease. [abstract 1219] academyhealth.org[online], (2014).

  30. Abraham, N., Wan, F., Montagnet, C., Wong, Y. N. & Armstrong, K. Decrease in racial disparities in the staging evaluation for prostate cancer after publication of staging guidelines. J. Urol. 178, 82–87 (2007).

    Article  PubMed  Google Scholar 

  31. Makarov, D. V. et al. Appropriate and inappropriate imaging rates for prostate cancer go hand in hand by region, as if set by thermostat. Health Aff. (Millwood) 31, 730–740 (2012).

    Article  Google Scholar 

  32. Yu, K. K. et al. Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology 202, 697–702 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chong, Y. et al. Value of diffusion-weighted imaging at 3 T for prediction of extracapsular extension in patients with prostate cancer: a preliminary study. AJR Am. J. Roentgenol. 202, 772–777 (2014).

    Article  PubMed  Google Scholar 

  35. Futterer, J. J. et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 237, 541–549 (2005).

    Article  PubMed  Google Scholar 

  36. Augustin, H., Fritz, G. A., Ehammer, T., Auprich, M. & Pummer, K. Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the Partin tables. Acta Radiol. 50, 562–569 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Futterer, J. J. et al. Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur. Radiol. 17, 1055–1065 (2007).

    Article  PubMed  Google Scholar 

  38. Prostate imaging and reporting and data system: Version 2. acr.org[online].

  39. Somford, D. M. et al. The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. J. Urol. 190, 1728–1734 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Cornud, F. et al. Endorectal 3D T2-weighted 1 mm-slice thickness MRI for prostate cancer staging at 1.5Tesla: should we reconsider the indirects signs of extracapsular extension according to the D'Amico tumor risk criteria? Eur. J. Radiol. 81, e591–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Rosenkrantz, A. B. et al. Prostate cancer: utility of diffusion-weighted imaging as a marker of side-specific risk of extracapsular extension. J. Magn. Reson. Imaging 38, 312–319 (2013).

    Article  PubMed  Google Scholar 

  42. Lawrence, E. M. et al. Preoperative 3-T diffusion-weighted MRI for the qualitative and quantitative assessment of extracapsular extension in patients with intermediate- or high-risk prostate cancer. AJR Am. J. Roentgenol. 203, W280–286 (2014).

    Article  PubMed  Google Scholar 

  43. Ruprecht, O., Weisser, P., Bodelle, B., Ackermann, H. & Vogl, T. J. MRI of the prostate: interobserver agreement compared with histopathologic outcome after radical prostatectomy. Eur. J. Radiol. 81, 456–460 (2012).

    Article  PubMed  Google Scholar 

  44. Mullerad, M. et al. Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging. Radiology 232, 140–146 (2004).

    Article  PubMed  Google Scholar 

  45. Jager, G. J., Ruijter, E. T., de la Rosette, J. J. & van de Kaa, C. A. Amyloidosis of the seminal vesicles simulating tumor invasion of prostatic carcinoma on endorectal MR images. Eur. Radiol. 7, 552–554 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Soylu, F. N. et al. Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology 267, 797–806 (2013).

    Article  PubMed  Google Scholar 

  47. McClure, T. D. et al. Use of MR imaging to determine preservation of the neurovascular bundles at robotic-assisted laparoscopic prostatectomy. Radiology 262, 874–883 (2012).

    Article  PubMed  Google Scholar 

  48. Park, B. H. et al. Influence of magnetic resonance imaging in the decision to preserve or resect neurovascular bundles at robotic assisted laparoscopic radical prostatectomy. J. Urol. 192, 82–88 (2014).

    Article  PubMed  Google Scholar 

  49. Schoder, H. & Larson, S. M. Positron emission tomography for prostate, bladder, and renal cancer. Semin. Nucl. Med. 34, 274–292 (2004).

    Article  PubMed  Google Scholar 

  50. Shreve, P. D. & Gross, M. D. Imaging of the pancreas and related diseases with PET carbon-11-acetate. J. Nucl. Med. 38, 1305–1310 (1997).

    CAS  PubMed  Google Scholar 

  51. Apolo, A. B., Pandit-Taskar, N. & Morris, M. J. Novel tracers and their development for the imaging of metastatic prostate cancer. J. Nucl. Med. 49, 2031–2041 (2008).

    Article  PubMed  Google Scholar 

  52. Richter, J. A. et al. Dual tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Mol. Imaging Biol. 12, 210–7 (2010).

    Article  PubMed  Google Scholar 

  53. Umbehr, M. H., Muntener, M., Hany, T., Sulser, T. & Bachmann, L. M. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur. Urol. 64, 106–117 (2013).

    Article  PubMed  Google Scholar 

  54. Jaeschke, R., Guyatt, G. H. & Sackett, D. L. Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 271, 703–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Picchio, M. et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur. Urol. 59, 51–60 (2011).

    Article  PubMed  Google Scholar 

  56. Kjolhede, H. et al. Combined 18F-fluorocholine and 18F-fluoride positron emission tomography/computed tomography imaging for staging of high-risk prostate cancer. BJU Int. 110, 1501–1506 (2012).

    Article  PubMed  Google Scholar 

  57. Beheshti, M. et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 254, 925–33 (2010).

    Article  PubMed  Google Scholar 

  58. Kabasakal, L. et al. Evaluation of PSMA PET/CT imaging using a 68Ga-HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl. Med. Commun. 36, 582–587 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Eiber, M. et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J. Nucl. Med. 56, 668–674 (2015).

    Article  PubMed  Google Scholar 

  60. Eiber, M. et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest. Radiol. 45, 15–23 (2010).

    Article  PubMed  Google Scholar 

  61. Thoeny, H. C. et al. Metastases in Normal-sized Pelvic Lymph Nodes: Detection with Diffusion-weighted MR Imaging. Radiology 273, 125–135 (2014).

    Article  PubMed  Google Scholar 

  62. Heck, M. M. et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 41, 694–701 (2014).

    Article  PubMed  Google Scholar 

  63. Kjolhede, H. et al. (18)F-fluorocholine PET/CT compared with extended pelvic lymph node dissection in high-risk prostate cancer. World J. Urol. 32, 965–970 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Poulsen, M. H. et al. [18F]fluoromethylcholine (FCH) positron emission tomography/computed tomography (PET/CT) for lymph node staging of prostate cancer: a prospective study of 210 patients. BJU Int. 110, 1666–1671 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Haseebuddin, M. et al. 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J. Nucl. Med. 54, 699–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Davis, G. L. Sensitivity of frozen section examination of pelvic lymph nodes for metastatic prostate carcinoma. Cancer 76, 661–668 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Schuster, D. M. et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. Med. 48, 56–63 (2007).

    CAS  PubMed  Google Scholar 

  68. Chen, Y. et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pen tanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res. 17, 7645–7653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Even-Sapir, E. et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med. 47, 287–297 (2006).

    PubMed  Google Scholar 

  70. D'Amico, A. V. et al. Prostate specific antigen doubling time as a surrogate end point for prostate cancer specific mortality following radical prostatectomy or radiation therapy. J. Urol. 172, S42–S47 (2004).

    Article  PubMed  Google Scholar 

  71. Leung, D., Krishnamoorthy, S., Schwartz, L. & Divgi, C. Imaging approaches with advanced prostate cancer: techniques and timing. Can. J. Urol. 21, 42–47 (2014).

    PubMed  Google Scholar 

  72. Imbriaco, M. et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin. Cancer Res. 4, 1765–1772 (1998).

    CAS  PubMed  Google Scholar 

  73. Dennis, E. R. et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J. Clin. Oncol. 30, 519–524 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ulmert, D. et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur. Urol. 62, 78–84 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Caldarella, C., Treglia, G., Giordano, A. & Giovanella, L. When to perform positron emission tomography/computed tomography or radionuclide bone scan in patients with recently diagnosed prostate cancer. Cancer Manag. Res. 5, 123–131 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Damle, N. A. et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J. Radiol. 31, 262–269 (2013).

    Article  PubMed  Google Scholar 

  77. Mari Aparici, C. & Seo, Y. Functional imaging for prostate cancer: therapeutic implications. Semin. Nucl. Med. 42, 328–342 (2012).

    Article  PubMed  Google Scholar 

  78. Langsteger, W. et al. Imaging of bone metastases in prostate cancer: an update. Q. J. Nucl. Med. Mol. Imaging 56, 447–458 (2012).

    CAS  PubMed  Google Scholar 

  79. Perlmutter, M. A. & Lepor, H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev. Urol. 9 (Suppl. 1), S3–S8 (2007).

    PubMed  PubMed Central  Google Scholar 

  80. Rakheja, R. et al. Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: current status, future aspects. PET Clin. 9, 237–252 (2014).

    Article  PubMed  Google Scholar 

  81. Cachovan, M., Vija, A. H., Hornegger, J. & Kuwert, T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res. 3, 45 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cook, G. J. & Fogelman, I. The role of positron emission tomography in skeletal disease. Semin. Nucl. Med. 31, 50–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Fogelman, I., Cook, G., Israel, O. & Van der Wall, H. Positron emission tomography and bone metastases. Semin. Nucl. Med. 35, 135–142 (2005).

    Article  PubMed  Google Scholar 

  84. Schiepers, C. et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J. Nucl. Med. 38, 1970–1976 (1997).

    CAS  PubMed  Google Scholar 

  85. Israel, O. et al. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 33, 1280–1284 (2006).

    Article  PubMed  Google Scholar 

  86. Barrett, T. et al. DCE and DW MRI in monitoring response to androgen deprivation therapy in patients with prostate cancer: a feasibility study. Magn. Reson. Med. 67, 778–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Michoux, N. et al. Evaluation of DCE-MRI postprocessing techniques to assess metastatic bone marrow in patients with prostate cancer. Clin. Imaging 36, 308–315 (2012).

    Article  PubMed  Google Scholar 

  88. Luboldt, W. et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249, 1017–25 (2008).

    Article  PubMed  Google Scholar 

  89. Nakanishi, K. et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn. Reson. Med. Sci. 6, 147–155 (2007).

    Article  PubMed  Google Scholar 

  90. Lecouvet, F. E. et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur. Urol. 62, 68–75 (2012).

    Article  PubMed  Google Scholar 

  91. Lee, K. C. et al. A feasibility study evaluating the functional diffusion map as a predictive imaging biomarker for detection of treatment response in a patient with metastatic prostate cancer to the bone. Neoplasia 9, 1003–1011 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Reischauer, C. et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps—initial observations. Radiology 257, 523–531 (2010).

    Article  PubMed  Google Scholar 

  93. Messiou, C. et al. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur. Radiol. 21, 2169–2177 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Koh, D. M. & Collins, D. J. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am. J. Roentgenol. 188, 1622–1635 (2007).

    Article  PubMed  Google Scholar 

  95. Usuda, K. et al. Diffusion-weighted imaging is superior to positron emission tomography in the detection and nodal assessment of lung cancers. Ann. Thorac. Surg. 91, 1689–1695 (2011).

    Article  PubMed  Google Scholar 

  96. Choi, S. H. et al. Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion MRI in head and neck cancer. J. Nucl. Med. 52, 1056–62 (2011).

    Article  PubMed  Google Scholar 

  97. Nakajo, M. et al. FDG PET/CT and diffusion-weighted imaging for breast cancer: prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion. Eur. J. Nucl. Med. Mol. Imaging 37, 2011–2020 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Wong, C. S. et al. Correlation of measurements from diffusion weighted MR imaging and FDG PET/CT in GIST patients: ADC versus SUV. Eur. J. Radiol. 81, 2122–2126 (2012).

    Article  PubMed  Google Scholar 

  99. Ho, K. C. et al. Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur. J. Nucl. Med. Mol. Imaging 36, 200–208 (2009).

    Article  PubMed  Google Scholar 

  100. Matsushima, N. et al. Relation between FDG uptake and apparent diffusion coefficients in glioma and malignant lymphoma. Ann. Nucl. Med. 26, 262–271 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Schoder, H. et al. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for the detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin. Cancer Res. 11, 4761–9 (2005).

    Article  PubMed  Google Scholar 

  102. Morris, M. J. et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin. Cancer Res. 11, 3210–3216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yeh, S. D. et al. Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl. Med. Biol. 23, 693–697 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Salminen, E., Hogg, A., Binns, D., Frydenberg, M. & Hicks, R. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol. 41, 425–429 (2002).

    Article  PubMed  Google Scholar 

  105. Tolvanen, T. et al. Biodistribution and radiation dosimetry of [(11)C]choline: a comparison between rat and human data. Eur. J. Nucl. Med. Mol. Imaging 37, 874–883 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Picchio, M. et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 39, 13–26 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Bauman, G. et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 15, 45–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Beheshti, M. et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur. J. Nucl. Med. Mol. Imaging 35, 1766–1774 (2008).

    Article  PubMed  Google Scholar 

  109. Pinaquy, J. B. et al. Comparative effectiveness of [18F]-fluorocholine PET-CT and pelvic MRI with diffusion-weighted imaging for staging in patients with high-risk prostate cancer. Prostate 75, 323–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. FDA approves production of imaging agent that helps detect prostate cancer. fda.gov[online].

  111. Oyama, N. et al. 11C-acetate PET imaging of prostate cancer. J. Nucl. Med. 43, 181–186 (2002).

    CAS  PubMed  Google Scholar 

  112. Oyama, N. et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J. Nucl. Med. 44, 549–555 (2003).

    CAS  PubMed  Google Scholar 

  113. Fricke, E. et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 30, 607–611 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Yu, E. Y. et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin. Nucl. Med. 36, 192–198 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Matthies, A. et al. Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur. J. Nucl. Med. Mol. Imaging 31, 797 (2004).

    Article  PubMed  Google Scholar 

  116. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. & Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  117. O'Keefe, D. S. et al. Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. Biochim. Biophys. Acta 1443, 113–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Manyak, M. J. Indium-111 capromab pendetide in the management of recurrent prostate cancer. Expert Rev. Anticancer Ther. 8, 175–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Bander, N. H. Technology insight: monoclonal antibody imaging of prostate cancer. Nat. Clin. Pract. Urol. 3, 216–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Evans, M. J. et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc. Natl Acad. Sci. USA 108, 9578–9582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. van de Watering, F. C. et al. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. Biomed. Res. Int. 2014, 203601 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Afshar-Oromieh, A. et al. The diagnostic value of PET/CT imaging with the Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 42, 197–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Schmidt, G. P. et al. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur. Radiol. 17, 939–949 (2007).

    Article  PubMed  Google Scholar 

  124. Mosavi, F. et al. Whole-body diffusion-weighted MRI compared with (18)F-NaF PET/CT for detection of bone metastases in patients with high-risk prostate carcinoma. AJR Am. J. Roentgenol. 199, 1114–1120 (2012).

    Article  PubMed  Google Scholar 

  125. Dietrich, O., Biffar, A., Reiser, M. F. & Baur-Melnyk, A. Diffusion-weighted imaging of bone marrow. Semin. Musculoskelet. Radiol. 13, 134–144 (2009).

    Article  PubMed  Google Scholar 

  126. Wetter, A. et al. Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F] choline PET/MRI: combined SUV and ADC analysis. Ann. Nucl. Med. 28, 405–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Woodrum, D. A. et al. Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. Urology 82, 870–875 (2013).

    Article  PubMed  Google Scholar 

  128. Chang, C. H. et al. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol. Int. 70, 311–315 (2003).

    Article  PubMed  Google Scholar 

  129. Beheshti, M. et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J. Nucl. Med. 54, 833–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L. & Bouffler, S. Assessing cancer risks of low-dose radiation. Nat. Rev. Cancer 9, 596–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Prasad, K. N., Cole, W. C. & Hasse, G. M. Health risks of low dose ionizing radiation in humans: a review. Exp. Biol. Med. (Maywood) 229, 378–382 (2004).

    Article  CAS  Google Scholar 

  132. Lin, E. C. Radiation risk from medical imaging. Mayo Clin. Proc. 85, 1142–1146 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Huang, B., Law, M. W. & Khong, P. L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251, 166–174 (2009).

    Article  PubMed  Google Scholar 

  134. Lam, D. L., Larson, D. B., Eisenberg, J. D., Forman, H. P. & Lee, C. I. Communicating Potential Radiation-Induced Cancer Risks From Medical Imaging Directly to Patients. AJR Am. J. Roentgenol. 21, 1–9 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussion of article content, writing; reviewing, and editing the article before submission. M.A.B., A.B.R., L.S.B. and R.A.R. researched data for the article.

Corresponding author

Correspondence to Samir S. Taneja.

Ethics declarations

Competing interests

S.S.T. has been a speaker for Eigen, a consultant for Hitachi-Aloka Medical and HealthTronics, and a sponsored trial investigator for Trod Medical. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjurlin, M., Rosenkrantz, A., Beltran, L. et al. Imaging and evaluation of patients with high-risk prostate cancer. Nat Rev Urol 12, 617–628 (2015). https://doi.org/10.1038/nrurol.2015.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.242

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer