Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of prostanoids in urinary bladder physiology

Abstract

Five primary prostanoids are synthesized by the cyclooxygenase enzymes, COX-1 and COX-2: the prostaglandins PGE2, PGF, PGI2, PGD2 and thromboxane A2. High levels of these signaling molecules have been implicated—in both animal models and human studies—in decreased functional bladder capacity and micturition volume and increased voiding contraction amplitude. Thus, inhibition of prostanoid production or the use of prostanoid receptor antagonists, might be a rational way to treat patients with detrusor muscle overactivity. Similarly, prostanoid receptor agonists, or agents that stimulate their production, might have a function in treating bladder underactivity. Although some promising results have been reported, the adverse effects of nonselective cyclooxygenase inhibitors are a major concern that restricts their use in the treatment of functional bladder disorders. Further preclinical and clinical studies are needed before cyclooxygenase inhibitors, prostanoid receptor agonists and antagonists become worthwhile therapeutic tools in this setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of prostanoid synthesis and prostaglandin receptor affinity.
Figure 2: Schematic overview of the distribution of prostanoid receptors in the mammalian bladder.
Figure 3: Common pathological states of the urinary bladder.

Similar content being viewed by others

References

  1. Boutaud, O. et al. Prostaglandin H2 (PGH2) accelerates formation of amyloid β1–42 oligomers. J. Neurochem. 82, 1003–1006 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Salomon, R. G., Miller, D. B., Zagorski, M. G. & Coughlin, D. J. Prostaglandin endoperoxides. 14. Solvent-induced fragmentation of prostaglandin endoperoxides. New aldehyde products from PGH2 and a novel intramolecular 1,2-hydride shift during endoperoxide fragmentation in aqueous solution. J. Am. Chem. Soc. 106, 6049–6060 (1984).

    Article  CAS  Google Scholar 

  3. Gilmore, N. J. & Vane, J. R. Hormones released into the circulation when the urinary bladder of the anaesthetized dog is distended. Clin. Sci. 41, 69–83 (1971).

    Article  CAS  PubMed  Google Scholar 

  4. Andersson, K. E. Overactive bladder—pharmacological aspects. Scand. J. Urol. Nephrol. Suppl. 210, 72–81 (2002).

    Article  Google Scholar 

  5. Nile, C. J. & Gillespie, J. I. Interactions between cholinergic and prostaglandin signaling elements in the urothelium: role for muscarinic type 2 receptors. Urology 79, 240.e17–23 (2012).

    Article  CAS  Google Scholar 

  6. Kobayter, S., Young, J. S. & Brain, K. L. Prostaglandin E2 induces spontaneous rhythmic activity in mouse urinary bladder independently of efferent nerves. Br. J. Pharmacol. 165, 401–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khalaf, I. M., Lehoux, J. G., Elshawarby, L. A. & Elhilali, M. M. Release of prostaglandins into the pelvic venous blood of dogs in response to vesical distension and pelvic nerve stimulation. Invest. Urol. 17, 244–247 (1979).

    CAS  PubMed  Google Scholar 

  8. Khalaf, I. M., Ghoneim, M. A. & Elhilali, M. M. The effect of exogenous prostaglandins F2α and E2 and indomethacin on micturition. Br. J. Urol. 53, 21–28 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Husted, S., Sjögren, C. & Andersson, K. E. Role of prostaglandins in the responses of rabbit detrusor to non-cholinergic, non-adrenergic nerve stimulation and to ATP. Arch. Int. Pharmacodyn. Ther. 246, 84–97 (1980).

    CAS  PubMed  Google Scholar 

  10. Downie, J. W. & Karmazyn, M. Mechanical trauma to bladder epithelium liberates prostanoids which modulate neurotransmission in rabbit detrusor muscle. J. Pharmacol. Exp. Ther. 230, 445–449 (1984).

    CAS  PubMed  Google Scholar 

  11. Abrams, P. H., Sykes, J. A., Rose, A. J. & Rogers, A. F. The synthesis and release of prostaglandins by human urinary bladder muscle in vitro. Invest. Urol. 16, 346–348 (1979).

    CAS  PubMed  Google Scholar 

  12. Kim, J. C., Park, E. Y., Seo, S. I., Park, Y. H. & Hwang, T. K. Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J. Urol. 175, 1773–1776 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, H. T., Tyagi, P., Chancellor, M. B. & Kuo, H. C. Urinary nerve growth factor but not prostaglandin E2 increases in patients with interstitial cystitis/bladder pain syndrome and detrusor overactivity. BJU Int. 106, 1681–1685 (2010).

    Article  PubMed  Google Scholar 

  14. Bultitude, M. I., Hills, N. H. & Shuttleworth, K. E. Clinical and experimental studies on the action of prostaglandins and their synthesis inhibitors on detrusor muscle in vitro and in vivo. Br. J. Urol. 48, 631–637 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Khalaf, I. M., Rioux, F., Quirion, R. & Elhilali, M. M. Intravesical prostaglandin: release and effect of bladder instillation on some micturition parameters. Br. J. Urol. 52, 351–356 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Klarskov, P. Influence of prostaglandins and ketoprofen on contractile responses of human and pig detrusor and trigone muscles in vitro. Pharmacol. Toxicol. 61, 37–41 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Poggesi, L. et al. The role of prostaglandins in the maintenance of the tone of the rabbit urinary bladder. Invest. Urol. 17, 454–458 (1980).

    CAS  PubMed  Google Scholar 

  18. Brown, W. W., Zenser, T. V. & Davis, B. B. Prostaglandin E2 production by rabbit urinary bladder. Am. J. Physiol. 239, F452–F458 (1980).

    CAS  PubMed  Google Scholar 

  19. Leslie, C. A., Pavlakis, A. J., Wheeler, J. S. Jr, Siroky, M. B. & Krane, R. J. Release of arachidonate cascade products by the rabbit bladder: neurophysiological significance? J. Urol. 132, 376–379 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Jeremy, J. Y., Mikhailidis, D. P. & Dandona, P. The rat urinary bladder produces prostacyclin as well as other prostaglandins. Prostaglandins Leukot. Med. 16, 235–248 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Larsson, C. Production and effects of prostaglandins in the detrusor from homo, cat, rabbit, and rat. Adv. Prostaglandin Thromboxane Res. 8, 1263–1267 (1980).

    CAS  PubMed  Google Scholar 

  22. Reyes, A. A. & Klahr, S. Bladder contributes to eicosanoids excreted in urine. Am. J. Physiol. 259 (5 Pt 2), F859–F861 (1990).

    CAS  PubMed  Google Scholar 

  23. de Jongh, R. et al. The localization of cyclo-oxygenase immuno-reactivity (COX I–IR) to the urothelium and to interstitial cells in the bladder wall. J. Cell. Mol. Med. 13, 3069–3081 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. de Jongh, R. et al. The effects of exogenous prostaglandins and the identification of constitutive cyclooxygenase I and II immunoreactivity in the normal guinea pig bladder. BJU Int. 100, 419–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Park, J. M. et al. Cyclooxygenase-2 is expressed in bladder during fetal development and stimulated by outlet obstruction. Am. J. Physiol. 273 (4 Pt 2), F538–F544 (1997).

    CAS  PubMed  Google Scholar 

  26. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Rouzer, C. A. & Marnett, L. J. Cyclooxygenases: structural and functional insights. J. Lipid Res. 50 (Suppl.), S29–S34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lecci, A. et al. Pharmacological evaluation of the role of cyclooxygenase isoenzymes on the micturition reflex following experimental cystitis in rats. Br. J. Pharmacol. 130, 331–338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Birder, L. A. & de Groat, W. C. Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat. Clin. Pract. Urol. 4, 46–54 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rahnama'i, M. S. et al. Prostaglandin receptor EP1 and EP2 site in guinea pig bladder urothelium and lamina propria. J. Urol. 183, 1241–1247 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda, Y. & Kanai, A. Urotheliogenic modulation of intrinsic activity in spinal cord-transected rat bladders: role of mucosal muscarinic receptors. Am. J. Physiol. Renal Physiol. 295, F454–F461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanai, A. et al. Origin of spontaneous activity in neonatal and adult rat bladders and its enhancement by stretch and muscarinic agonists. Am. J. Physiol. Renal Physiol. 292, F1065–F1072 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Klausner, A. P. et al. Prostaglandin E2 mediates spontaneous rhythmic contraction in rabbit detrusor muscle. Can. J. Urol. 18, 5608–5614 (2011).

    PubMed  Google Scholar 

  34. Anderson, G. F. Evidence for a prostaglandin link in the purinergic activation of rabbit bladder smooth muscle. J. Pharmacol. Exp. Ther. 220, 347–352 (1982).

    CAS  PubMed  Google Scholar 

  35. Nile, C. J., de Vente, J. & Gillespie, J. I. Stretch independent regulation of prostaglandin E2 production within the isolated guinea-pig lamina propria. BJU Int. 105, 540–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Maggi, C. A. et al. Evidence for the involvement of arachidonic acid metabolites in spontaneous and drug-induced contractions of rat urinary bladder. J. Pharmacol. Exp. Ther. 230, 500–513 (1984).

    CAS  PubMed  Google Scholar 

  37. Andersson, K. E., Ek, A. & Persson, C. G. Effects of prostaglandins on the isolated human bladder and urethra. Acta Physiol. Scand. 100, 165–171 (1977).

    Article  CAS  PubMed  Google Scholar 

  38. Andersson, K. E. & Forman, A. Effects of prostaglandins on the smooth muscle of the urinary tract. Acta Pharmacol. Toxicol. (Copenh.) 43 (Suppl. 2), 90–95 (1978).

    Article  CAS  Google Scholar 

  39. Khanna, O. P., Barbieri, E. J. & McMichael, R. Effects of prostaglandins on vesicourethral smooth muscle of rabbit. Therapeutic implications. Urology 12, 674–681 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. Klarskov, P., Gerstenberg, T., Ramirez, D., Christensen, P. & Hald, T. Prostaglandin type E activity dominates in urinary tract smooth muscle in vitro. J. Urol. 129, 1071–1074 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Maggi, C. A. et al. Prostanoids modulate reflex micturition by acting through capsaicin-sensitive afferents. Eur. J. Pharmacol. 145, 105–112 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Ueda, S., Satake, N. & Shibata, S. α1- and α2-adrenoceptors in the smooth muscle of isolated rabbit urinary bladder and urethra. Eur. J. Pharmacol. 103, 249–254 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Gotoh, M., Hassouna, M. & Elhilali, M. M. The mode of action of prostaglandin E2, F2α and prostacyclin on vesicourethral smooth muscle. J. Urol. 135, 431–437 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Poli, E., Macaluso, G. & Pozzoli, C. Actions of two novel prostaglandin analogs, SC-29169 and SC-31391, on guinea pig and human isolated urinary bladder. Gen. Pharmacol. 23, 805–809 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Brugger, N., Kim, N. N., Araldi, G. L., Traish, A. M. & Palmer, S. S. Pharmacological and functional characterization of novel EP and DP receptor agonists: DP1 receptor mediates penile erection in multiple species. J. Sex. Med. 5, 344–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Jeremy, J. Y. et al. Eicosanoid synthesis by human urinary bladder mucosa: pathological implications. Br. J. Urol. 59, 36–39 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Khera, M., Boone, T. B., Salas, N., Jett, M. F. & Somogyi, G. T. The role of the prostacyclin receptor antagonist RO3244019 in treating neurogenic detrusor overactivity after spinal cord injury in rats. BJU Int. 99, 442–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Palea, S. et al. Pharmacological characterization of thromboxane and prostanoid receptors in human isolated urinary bladder. Br. J. Pharmacol. 124, 865–872 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Collins, C. et al. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal. J. Cell. Mol. Med. 13, 3236–3250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schüssler, B. Comparison of the mode of action of prostaglandin E2 (PGE2) and sulprostone, a PGE2-derivative, on the lower urinary tract in healthy women. A urodynamic study. Urol. Res. 18, 349–352 (1990).

    Article  PubMed  Google Scholar 

  51. McCafferty, G. P., Misajet, B. A., Laping, N. J., Edwards, R. M. & Thorneloe, K. S. Enhanced bladder capacity and reduced prostaglandin E2-mediated bladder hyperactivity in EP3 receptor knockout mice. Am. J. Physiol. Renal Physiol. 295, F507–F514 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Ishizuka, O., Mattiasson, A. & Andersson, K. E. Prostaglandin E2-induced bladder hyperactivity in normal, conscious rats: involvement of tachykinins? J. Urol. 153, 2034–2038 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Park, J. M. et al. Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am. J. Physiol. 276, F129–F136 (1999).

    CAS  PubMed  Google Scholar 

  54. Hu, V. Y. et al. COX-2 and prostanoid expression in micturition pathways after cyclophosphamide-induced cystitis in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R574–R585 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, J. C. et al. Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int. J. Urol. 12, 875–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Alexander, S. P., Mathie, A. & Peters, J. A. Guide to Receptors and Channels (GRAC), 3rd edition. Br. J. Pharmacol. 153 (Suppl. 2), S1–S209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Negishi, M., Sugimoto, Y. & Ichikawa, A. Prostaglandin E receptors. J. Lipid Mediat. Cell Signal. 12, 379–391 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Coleman, R. A., Smith, W. L. & Narumiya, S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46, 205–229 (1994).

    CAS  PubMed  Google Scholar 

  59. Ikeda, M., Kawatani, M., Maruyama, T. & Ishihama, H. Prostaglandin facilitates afferent nerve activity via EP1 receptors during urinary bladder inflammation in rats. Biomed. Res. 27, 49–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Naganawa, A. et al. Discovery of heteroaryl sulfonamides as new EP1 receptor selective antagonists. Bioorg. Med. Chem. 14, 6628–6639 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Schröder, A., Newgreen, D. & Andersson, K. E. Detrusor responses to prostaglandin E2 and bladder outlet obstruction in wild-type and Ep1 receptor knockout mice. J. Urol. 172, 1166–1170 (2004).

    Article  PubMed  Google Scholar 

  62. Lee, T., Hedlund, P., Newgreen, D. & Andersson, K. E. Urodynamic effects of a novel EP1 receptor antagonist in normal rats and rats with bladder outlet obstruction. J. Urol. 177, 1562–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Rahnama'i, M. S. et al. The relationship between prostaglandin E receptor 1 and cyclooxygenase I expression in guinea pig bladder interstitial cells: proposition of a signal propagation system. J. Urol. 185, 315–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Jugus, M. J. et al. Dual modulation of urinary bladder activity and urine flow by prostanoid EP receptors in the conscious rat. Br. J. Pharmacol. 158, 372–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chuang, Y. C. et al. Intravesical botulinum toxin A administration inhibits COX-2 and EP4 expression and suppresses bladder hyperactivity in cyclophosphamide-induced cystitis in rats. Eur. Urol. 56, 159–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Beppu, M. et al. Bladder outlet obstruction induced expression of prostaglandin E2 receptor subtype EP4 in the rat bladder: a possible counteractive mechanism against detrusor overactivity. J. Urol. 186, 2463–2469 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Chuang, Y. C. et al. Expression of E-series prostaglandin (EP) receptors and urodynamic effects of an EP4 receptor antagonist on cyclophosphamide-induced overactive bladder in rats. BJU Int. 106, 1782–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Masunaga, K. et al. Prostaglandin E2 release from isolated bladder strips in rats with spinal cord injury. Int. J. Urol. 13, 271–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Andersson, K. E. et al. Pharmacological treatment of overactive bladder: report from the International Consultation on Incontinence. Curr. Opin. Urol. 19, 380–394 (2009).

    Article  PubMed  Google Scholar 

  70. Morikawa, K. et al. Detrusor hyperreflexia induced by intravesical instillation of xylene in conscious rats. Jpn J. Pharmacol. 52, 587–595 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Kibar, Y. et al. The effect of intravesical acetylsalicylic acid instillation on tissue prostaglandin levels after partial bladder outlet obstruction in rabbits. Neurourol. Urodyn. 30, 1646–1651 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Angelico, P. et al. Effect of cyclooxygenase inhibitors on the micturition reflex in rats: correlation with inhibition of cyclooxygenase isozymes. BJU Int. 97, 837–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Cardozo, L. D. & Stanton, S. L. A comparison between bromocriptine and indomethacin in the treatment of detrusor instability. J. Urol. 123, 399–401 (1980).

    Article  CAS  PubMed  Google Scholar 

  74. Cardozo, L. D., Stanton, S. L., Robinson, H. & Hole, D. Evaluation of flurbiprofen in detrusor instability. Br. Med. J. 280, 281–282 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sprem, M., Milicic´, D., Oreskovic´, S., Ljubojevic´, N. & Kalafatic´, D. Intravesically administered ketoprofen in treatment of detrusor instability: cross-over study. Croat. Med. J. 41, 423–427 (2000).

    CAS  PubMed  Google Scholar 

  76. Zemmel, M. H. The role of COX-2 inhibitors in the perioperative setting: efficacy and safety—a systematic review. AANA J. 74, 49–60 (2006).

    PubMed  Google Scholar 

  77. Bergman, A., Mushkat, Y., Gordon, D. & David, M. P. Prostaglandin for enhancing bladder function after vaginal surgery. Does it work? J. Reprod. Med. 37, 320–322 (1992).

    CAS  PubMed  Google Scholar 

  78. Delaere, K. P., Thomas, C. M., Moonen, W. A. & Debruyne, F. M. The value of intravesical prostaglandin E2 and F2α in women with abnormalities of bladder emptying. Br. J. Urol. 53, 306–309 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. Hindley, R. G., Brierly, R. D. & Thomas, P. J. Prostaglandin E2 and bethanechol in combination for treating detrusor underactivity. BJU Int. 93, 89–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Buckley, B. S. & Lapitan, M. C. Drugs for treatment of urinary retention after surgery in adults. Cochrane Database Syst. Rev. CD008023 (2010).

  81. Bergman, A., Mushket, Y., Gordon, D. & David, M. P. Prostaglandin prophylaxis and bladder function after vaginal hysterectomy: a prospective randomised study. Br. J. Obstet. Gynaecol. 100, 69–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Koonings, P. P., Bergman, A. & Ballard, C. A. Prostaglandins for enhancing detrusor function after surgery for stress incontinence in women. J. Reprod. Med. 35, 1–5 (1990).

    CAS  PubMed  Google Scholar 

  83. Andersson, K. E. & Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Maggi, C. A. Prostanoids as local modulators of reflex micturition. Pharmacol. Res. 25, 13–20 (1992).

    Article  CAS  PubMed  Google Scholar 

  85. Yokoyama, O. et al. Antimuscarinics suppress adenosine triphosphate and prostaglandin E2 release from urothelium with potential improvement in detrusor overactivity in rats with cerebral infarction. J. Urol. 185, 2392–2397 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Downie, J. W. & Larsson, C. Prostaglandin involvement in contractions evoked in rabbit detrusor by field stimulation and by adenosine 5'-triphosphate. Can. J. Physiol. Pharmacol. 59, 253–260 (1981).

    Article  CAS  PubMed  Google Scholar 

  87. Tanaka, I. et al. Modulation of stretch evoked adenosine triphosphate release from bladder epithelium by prostaglandin E2 . J. Urol. 185, 341–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Birder, L. Role of the urothelium in bladder function. Scand. J. Urol. Nephrol Suppl. 215, 48–53 (2004).

    Article  Google Scholar 

  89. van Koeveringe, G. A., Vahabi, B., Andersson, K. E., Kirschner-Herrmans, R. & Oelke, M. Detrusor underactivity: a plea for new approaches to a common bladder dysfunction. Neurourol. Urodyn. 30, 723–728 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Wilbraham, D., Masuda, T., Deacon, S., Kuwayama, T. & Vincent, S. Safety, tolerability, and pharmacokinetic of multiple ascending doses of the EP-1 receptor antagonist ONO-8539, a potential new and novel therapy to overactive bladder in healthy young and elderly subjects [abstract]. Eur. Urol. 9 (Suppl.), 250 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by an unconditional personal research grant (Mozaïek) to M. S. Rahnama'i by The Netherlands Organisation for Scientific Research (NWO). We are grateful to Dr Jan de Vente for his help with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M. S. Rahnama'i researched the data for the article and wrote the manuscript. G. A. van Koeveringe contributed to the discussions of its content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mohammad S. Rahnama'i.

Ethics declarations

Competing interests

G. A. van Koeveringe declares that he has been on the advisory boards for Allergan and Astellas Pharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahnama'i, M., van Kerrebroeck, P., de Wachter, S. et al. The role of prostanoids in urinary bladder physiology. Nat Rev Urol 9, 283–290 (2012). https://doi.org/10.1038/nrurol.2012.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing