Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Optimizing treatment in paediatric rheumatology—lessons from oncology

Abstract

Treatment of children with cancer, in particular with acute lymphoblastic leukaemia (ALL), has been highly successful in the past two decades owing to the implementation of treatment optimization studies. Study centres appointed by scientific societies design treatment optimization study protocols (TOSPs) that address an investigator-initiated research question and detail treatment procedures according to these aims. Nearly all children with malignant diseases are treated within TOSPs, whereas children with juvenile idiopathic arthritis (JIA) and other common paediatric rheumatic diseases are mostly treated outside TOSPs and clinical trials. Despite the differences in natural course and prognosis between malignant and inflammatory diseases, aiming for the recruitment of all children with defined rheumatic diseases into TOSPs or similar protocols would enable the longitudinal collection of crucial clinical data and improve evidence-based approaches. Successful research networks already exist in paediatric rheumatology that could facilitate the implementation of this approach. Paediatric rheumatic diseases have a considerable impact on patients and their families; thus, I propose that research networks in paediatric rheumatology should recruit most—if not all—children with rheumatic diseases into study protocols with standardized treatment and outcome measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TOSs and TOSPs.
Figure 2: Withdrawal trial design used in the majority of controlled trials in polyarticular JIA.

Similar content being viewed by others

References

  1. Schaller, J. G. The history of pediatric rheumatology. Pediatr. Res. 58, 997–1007 (2005).

    Article  Google Scholar 

  2. Woo, P. & Laxer, R. M. Advances in paediatric rheumatology and translation of research to targeted therapies. Preface. Best Pract. Res. Clin. Rheumatol. 28, 173–174 (2014).

    Article  Google Scholar 

  3. International Society of Paediatric Oncology. International Society of Paediatric Oncology [online], (2015).

  4. Gatta, G. et al. Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5—a population-based study. Lancet Oncol. 15, 35–47 (2014).

    Article  Google Scholar 

  5. Rizzari, C. et al. Rationale for a pediatric-inspired approach in the adolescent and young adult population with acute lymphoblastic leukemia, with a focus on asparaginase treatment. Hematol. Rep. 6, 5554 (2014).

    Article  Google Scholar 

  6. Stock, W. et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children's Cancer Group and Cancer and Leukemia Group B studies. Blood 112, 1646–1654 (2008).

    Article  CAS  Google Scholar 

  7. Huguet, F. et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia: the GRAALL-2003 study. J. Clin. Oncol. 27, 911–918 (2009).

    Article  CAS  Google Scholar 

  8. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  Google Scholar 

  9. Dueckers, G., Sander, O. & Niehues, T. Autoinflammatory diseases (AID). Klin. Padiatr. 226, 133–142 (2014).

    Article  CAS  Google Scholar 

  10. Kimura, Y. et al. Pulmonary hypertension and other potentially fatal pulmonary complications in systemic juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 65, 745–752 (2013).

    Article  CAS  Google Scholar 

  11. Jones, O. Y. et al. A multicenter case-control study on predictive factors distinguishing childhood leukemia from juvenile rheumatoid arthritis. Pediatrics. 117, e840–e844 (2006).

    Article  Google Scholar 

  12. Tallen, G. et al. Musculoskeletal pain: a new algorithm for differential diagnosis of a cardinal symptom in pediatrics. Klin. Padiatr. 226, 86–98 (2014).

    Article  CAS  Google Scholar 

  13. Costello, P. B., Brecher, M. L., Starr, J. I., Freeman, A. I. & Green, F. A. A prospective analysis of the frequency, course, and possible prognostic significance of the joint manifestations of childhood leukemia. J. Rheumatol. 10, 753–757 (1983).

    CAS  PubMed  Google Scholar 

  14. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  Google Scholar 

  15. Zuelzer, W. W. Implications of long-term survival in acute stem cell leukemia of childhood treated with composite cyclic therapy. Blood 24, 477–494 (1964).

    CAS  PubMed  Google Scholar 

  16. Klingebiel, T. & Schrappe, M. Prof. Dr. Hansjörg Riehm, ein Leben für die Wissenschaft [German]. Klin. Padiatr. 225 (Suppl. 1), S9–S14 (2013).

    PubMed  Google Scholar 

  17. Riehm, H., Gadner, H. & Welte, K. Die West-Berliner Studie zur Behandlung der akuten lymphoblastischen Leukämie des Kindes—Erfahrungsbericht nach 6 Jahren [German]. Klin. Padiatr. 189, 89–102 (1977).

    CAS  PubMed  Google Scholar 

  18. Riehm, H., Gadner, H., Henze, G., Langermann, H. J. & Odenwald, E. The Berlin childhood acute lymphoblastic leukemia therapy study, 1970–1976. Am. J. Pediatr. Hematol. Oncol. 2, 299–305 (1980).

    Google Scholar 

  19. Harms, D. O. & Janka-Schaub, G. E. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia 14, 2234–2239 (2000).

    Article  CAS  Google Scholar 

  20. Hunger, S. P. Childhood Leukemia: a Practical Handbook Ch. 4 (eds Reaman, G. H. & Smith, F. O.) 79–120 (Springer, 2010).

    Google Scholar 

  21. Schrappe, M. et al. Die Behandlung der akuten lymphoblastischen Leukämie im Kindes- und Jugendalter: Ergebnisse der multizentrischen Therapiestudie ALL-BFM 81 [German]. Klin. Padiatr. 199, 133–150 (1987).

    Article  CAS  Google Scholar 

  22. Hughes, W. T. et al. Successful chemoprophylaxis for Pneumocystis carinii pneumonitis. N. Engl. J. Med. 297, 1419–1426 (1977).

    Article  CAS  Google Scholar 

  23. Ribas-Mundo, M., Granena, A. & Rozman, C. Evaluation of a protective environment in the management of granulocytopenic patients: a comparative study. Cancer 48, 419–424 (1981).

    Article  CAS  Google Scholar 

  24. Schmiegelow, K. et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 113, 6077–6084 (2009).

    Article  CAS  Google Scholar 

  25. Creutzig, U. et al. Krebserkrankungen bei Kindern—Erfolg durch einheitliche Therapiekonzepte seit 25 Jahren. Deutsches Ärzteblatt [German]. Deutsches Ärzteblatt. 100, A842–A852 (2003).

    Google Scholar 

  26. Kovács, G., Müller, J., Borgulya, G., Koós, R. & Magyar Gyermekonkológiai Hálózat. A gyermekkori Hodgkin-lymphoma kezelési eredményei Magyarországon [Hungary]. Magy. Onkol. 45, 397–401 (2001).

    PubMed  Google Scholar 

  27. European Commission. Commission directive 2005/28/EC of 8 April laying down principles and detailed guidelines for good clinical practice as regards investigational medicinal products for human use, as well as the requirements for authorisation of the manufacturing or importation of such products [online], (2005).

  28. European Commission. Directive 2001/20/EC of the European Parliament and of the council of 4 April on the approximation of the laws, regulations and administrative provisions of the Member States relating to the implementation of good clinical practice in the conduct of clinical trials on medicinal products for human use [online], (2001).

  29. Hoey, R. The EU clinical trials directive: 3 years on. Lancet 369, 1777–1778 (2007).

    Article  Google Scholar 

  30. European Leukemia Net. ELN [online], (2015).

  31. Hansson, M. G. et al. Ethics bureaucracy: a significant hurdle for collaborative follow-up of drug effectiveness in rare childhood diseases. Arch. Dis. Child. 97, 561–563 (2012).

    Article  Google Scholar 

  32. European Parliament. Regulation (EU) No 536/2014 of the European Parliament and of the Council of 16 April on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC [online], (2014).

  33. International Conference of Harmonization (ICH). International Conference of Harmonization—harmonization for better health [online], (2015).

  34. Universitätsmedizin der Johannes Gutenberg-Universität Mainz. Das Deutsche Kinderkrebsregister (German Childhood Cancer Registry (GCCR) [online], (2015).

  35. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    Article  CAS  Google Scholar 

  36. Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).

    Article  CAS  Google Scholar 

  37. Burmester, G. R., Feist, E. & Dorner, T. Emerging cell and cytokine targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 77–88 (2014).

    Article  CAS  Google Scholar 

  38. Vastert, S. & Prakken, B. Update on research and clinical translation on specific clinical areas: from bench to bedside: how insight in immune pathogenesis can lead to precision medicine of severe juvenile idiopathic arthritis. Best Pract. Res. Clin. Rheumatol. 28, 229–246 (2014).

    Article  Google Scholar 

  39. De Benedetti, F. et al. Differences in synovial fluid cytokine levels between juvenile and adult rheumatoid arthritis. J. Rheumatol. 24, 1403–1409 (1997).

    CAS  PubMed  Google Scholar 

  40. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 73, 492–509 (2014).

    Article  CAS  Google Scholar 

  41. Nam, J. L. et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2013 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 73, 516–528 (2014).

    Article  CAS  Google Scholar 

  42. Beukelman, T. et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res. 63, 465–482 (2011).

    Article  Google Scholar 

  43. Dueckers, G. et al. Evidence and consensus based GKJR guidelines for the treatment of juvenile idiopathic arthritis. Clin. Immunol. 142, 176–193 (2012).

    Article  CAS  Google Scholar 

  44. Giannini, E. H. et al. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.–U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children's Study Group. N. Engl. J. Med. 326, 1043–1049 (1992).

    Article  CAS  Google Scholar 

  45. Foell, D. et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303, 1266–1273 (2010).

    Article  CAS  Google Scholar 

  46. Ruperto, N. et al. A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate. Arthritis Rheum. 50, 2191–2201 (2004).

    Article  CAS  Google Scholar 

  47. Ruperto, N. et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 372, 383–391 (2008).

    Article  CAS  Google Scholar 

  48. Brunner, H. I. et al. Efficacy and safety of tocilizumab in patients with polyarticular-course juvenile idiopathic arthritis: results from a phase 3, randomised, double-blind withdrawal trial. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2014-205351.

  49. Tudur Smith, C., Williamson, P. R. & Beresford, M. W. Methodology of clinical trials for rare diseases. Best Pract. Res. Clin. Rheumatol. 28, 247–262 (2014).

    Article  Google Scholar 

  50. Lehman, T. J. Are withdrawal trials in paediatric rheumatic disease helpful? Lancet 372, 348–350 (2008).

    Article  Google Scholar 

  51. Lovell, D. J. et al. Safety and efficacy of up to eight years of continuous etanercept therapy in patients with juvenile rheumatoid arthritis. Arthritis Rheum. 58, 1496–1504 (2008).

    Article  CAS  Google Scholar 

  52. DeWitt, E. M. & Brunner, H. I. The landscape of comparative effectiveness research in rheumatology. Nat. Rev. Rheumatol. 10, 57–62 (2014).

    Article  Google Scholar 

  53. Beukelman, T. et al. Disease-modifying antirheumatic drug use in the treatment of juvenile idiopathic arthritis: a cross-sectional analysis of the CARRA Registry. J. Rheumatol. 39, 1867–1874 (2012).

    Article  Google Scholar 

  54. Boyman, O., Comte, D. & Spertini, F. Adverse reactions to biologic agents and their medical management. Nat. Rev. Rheumatol. 10, 612–627 (2014).

    Article  CAS  Google Scholar 

  55. Ramiro, S. et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2014 update of the EULAR recommendations for management of rheumatoid arthritis. Ann. Rheum. Dis. 73, 529–535 (2014).

    Article  CAS  Google Scholar 

  56. DeWitt, E. M. et al. Consensus treatment plans for new-onset systemic juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 64, 1001–1010 (2012).

    CAS  Google Scholar 

  57. Mina, R. et al. Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 64, 375–383 (2012).

    Article  Google Scholar 

  58. Childhood Arthritis and Rheumatology Research Alliance. The CARRA Registry [online], (2015).

  59. Pediatric Rheumatology INternational Trials Organisation. PRINTO Group [online], (2015).

  60. The National Organization for Rare Disorders. NORD [online], (2015).

  61. Care-for-Rare Foundation. Care-for-Rare Foundation [online], (2015).

  62. Duurland, C. L. & Wedderburn, L. R. Current developments in the use of biomarkers for juvenile idiopathic arthritis. Curr. Rheumatol. Rep. 16, 406 (2014).

    Article  Google Scholar 

  63. Rothmund, F. et al. Validation of relapse risk biomarkers for routine use in patients with juvenile idiopathic arthritis. Arthritis Care Res. (Hoboken) 66, 949–955 (2014).

    Article  CAS  Google Scholar 

  64. Cancer Research U. K. Acute lymphoblastic leukaemia (ALL) incidence statistics [online], (2015).

  65. National Cancer Institute. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995 [online], (1999).

  66. Cassidy, J. T., Petty, R. E., Laxer, R. M. & Lindsley, C. B. in Textbook of Pediatric Rheumatology 6th edn Ch. 13. 211–235 (Elsevier, 2010).

    Google Scholar 

  67. Greaves, M. Infection, immune responses and the aetiology of childhood leukaemia. Nat. Rev. Cancer 6, 193–203 (2006).

    Article  CAS  Google Scholar 

  68. Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

    Article  CAS  Google Scholar 

  69. Trevino, L. R. et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009).

    Article  CAS  Google Scholar 

  70. Hinks, A. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat. Genet. 45, 664–669 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank A. Groth (HELIOS Klinikum Krefeld, Germany) for meticulous preparation of the manuscript, U. Creutzig (Hannover Medical School, Hannover, Germany), D. Körholz (Universitätsklinikum Halle/Saale, Germany) and D. Föll (Westfälische Wilhelms-Universität Münster, Germany) for critical reading, and U. Göbel (Professor emeritus Heinrich-Heine University, Düsseldorf, Germany), M. Schrappe (Universitätsklinikum Kiel, Germany) and H. Riehm (Professor emeritus Hannover Medical School, Hannover, Germany) for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Niehues.

Ethics declarations

Competing interests

T.N. received speaker or consultant fees from Abbott, Baxter, Bristol Myers Squibb, CSL Behring, Essex-Pharma, Glaxo Smith-Kline, Novartis, Octapharma and Pfizer.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niehues, T. Optimizing treatment in paediatric rheumatology—lessons from oncology. Nat Rev Rheumatol 11, 493–499 (2015). https://doi.org/10.1038/nrrheum.2015.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.50

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer