Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic risk factors for spontaneous intracerebral haemorrhage

Key Points

  • The strongest established risk factors for intracerebral haemorrhage (ICH) are related to lifestyle; however, ICH is familially aggregated

  • Identification of genetic risk factors for ICH could improve strategies to prevent ICH and aid development of more-effective therapeutic interventions

  • The strongest associations between ICH and genetic variants include two apolipoprotein E alleles that contribute to cerebral amyloid angiopathy, and a locus containing PMF1 and SLC25A44 that has been linked to hypertension and small vessel disease

  • Hypertension is the most important risk factor of ICH, and strong evidence supports an association between ICH and variants of the genes MTHFR, ACE, TRHDE and COL4A2

  • To confirm whether genetic risk factors have a clinically relevant role in ICH, genome-wide association studies with larger, more-heterogeneous cohorts are needed

Abstract

Intracerebral haemorrhage (ICH) is associated with the greatest morbidity and mortality of all stroke subtypes. Established risk factors for ICH include hypertension, alcohol use, current cigarette smoking, and use of oral anticoagulants and/or antiplatelet agents. Familial aggregation of ICH has been observed, and the heritability of ICH risk has been estimated at 44%. Few genes have been found to be associated with ICH at the population level, and much of the evidence for genetic risk factors for ICH comes from single studies conducted in relatively small and homogenous populations. In this Review, we summarize the current knowledge of genetic variants associated with primary spontaneous ICH. Two variants of the gene encoding apolipoprotein E (APOE) — which also contributes to the pathogenesis of cerebral amyloid angiopathy — are the most likely candidates for variants that increase the risk of ICH. Other promising candidates for risk alleles in ICH include variants of the genes ACE, PMF1/SLC25A44, COL4A2, and MTHFR. Other genetic variants, related to haemostasis, lipid metabolism, inflammation, and the CNS microenvironment, have been linked to ICH in single candidate gene studies. Although evidence for genetic contributions to the risk of ICH exists, we do not yet fully understand how and to what extent this information can be utilized to prevent and treat ICH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic variants contributing to risk of ICH.

Similar content being viewed by others

References

  1. Mozaffarian, D. et al. Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation 131, e29–e322 (2015).

    PubMed  Google Scholar 

  2. Krishnamurti, R. V. et al. Stroke prevalence, mortality and disability-adjusted life years in adults aged 20–64 years in 1990-2013: data from the Global Burden of Disease 2013 Study. Neuroepidemiology 45, 190–202 (2015).

    Google Scholar 

  3. van Asch, C. J. et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 9, 167–176 (2010).

    PubMed  Google Scholar 

  4. Hemphill, J. C. 3rd, Bonovich, D. C., Besmertis, L., Manley, G. T. & Johnston, S. C. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke 32, 891–897 (2001).

    PubMed  Google Scholar 

  5. Flaherty, M. L. et al. Long-term mortality after intracerebral hemorrhage. Neurology 66, 1182–1186 (2006).

    CAS  PubMed  Google Scholar 

  6. Saposnik, G. et al. Variables associated with 7-day, 30-day, and 1-year fatality after ischemic stroke. Stroke 39, 2318–2324 (2008).

    PubMed  Google Scholar 

  7. Rost, N. S. et al. Prediction of functional outcome in patients with primary intracerebral hemorrhage: the FUNC score. Stroke 39, 2304–2309 (2008).

    PubMed  Google Scholar 

  8. Hart, R. G. et al. Aspirin for the primary prevention of stroke and other major vascular events: meta-analysis and hypotheses. Arch. Neurol. 57, 326–332 (2000).

    CAS  PubMed  Google Scholar 

  9. Martini, S. R. et al. Risk factors for intracerebral hemorrhage differ according to hemorrhage location. Neurology 79, 2275–2282 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. Woo, D. et al. Genetic and environmental risk factors for intracerebral hemorrhage: preliminary results of a population-based study. Stroke 33, 1190–1195 (2002).

    PubMed  Google Scholar 

  11. Alberts, M. J., McCarron, M. O., Hoffmann, K. L. & Graffagnino, C. Familial clustering of intracerebral hemorrhage: a prospective study in North Carolina. Neuroepidemiology 21, 18–21 (2002).

    CAS  PubMed  Google Scholar 

  12. Sundquist, K., Li, X. & Hemminki, K. Familial risk of ischemic and hemorrhagic stroke: a large-scale study of the Swedish population. Stroke 37, 1668–1673 (2006).

    PubMed  Google Scholar 

  13. Devan, W. J. et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 44, 1578–1583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Visscher, P. M. et al. A commentary on 'common SNPs explain a large proportion of the heritability for human height' by Yang et al. (2010). Twin Res. Hum. Genet. 13, 517–524 (2010).

    PubMed  Google Scholar 

  16. Zhang, R. et al. Apolipoprotein E gene polymorphism and the risk of intracerebral hemorrhage: a meta-analysis of epidemiologic studies. Lipids Health Dis. 13, 47 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Corder, E. H. et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 7, 180–184 (1994).

    CAS  PubMed  Google Scholar 

  18. Rannikmae, K., Samarasekera, N., Martinez-Gonzalez, N. A., Al- Shahi Salman, R. & Sudlow, C. L. Genetics of cerebral amyloid angiopathy: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 84, 901–908 (2013).

    PubMed  Google Scholar 

  19. Pezzini, A. & Padovani, A. Cerebral amyloid angiopathy-related hemorrhages. Neurol. Sci. 29, S260–S263 (2008).

    PubMed  Google Scholar 

  20. Yamada, M. Cerebral amyloid angiopathy: emerging concepts. J. Stroke 17, 17–30 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Rannikmae, K. et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J. Neurol. Neurosurg. Psychiatry 85, 300–305 (2014).

    PubMed  Google Scholar 

  22. Greenberg, S. M. et al. Apolipoprotein E ε4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27, 1333–1337 (1996).

    CAS  PubMed  Google Scholar 

  23. Premkumar, D. R., Cohen, D. L., Hedera, P., Friedland, R. P. & Kalaria, R. N. Apolipoprotein E-epsilon4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer's disease. Am. J. Pathol. 148, 2083–2095 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nicoll, J. A. et al. High frequency of apolipoprotein E epsilon 2 allele in hemorrhage due to cerebral amyloid angiopathy. Ann. Neurol. 41, 716–721 (1997).

    CAS  PubMed  Google Scholar 

  25. Biffi, A. et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann. Neurol. 68, 934–943 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Biffi, A. et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 10, 702–709 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Brouwers, H. B. et al. Apolipoprotein E genotype predicts hematoma expansion in lobar intracerebral hemorrhage. Stroke 43, 1490–1495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McCarron, M. O. & Nicoll, J. A. Apolipoprotein E genotype and cerebral amyloid angiopathy-related hemorrhage. Ann. NY Acad. Sci. 903, 176–179 (2000).

    CAS  PubMed  Google Scholar 

  29. Niu, W., Qi, Y., Qian, Y., Gao, P. & Zhu, D. The relationship between apolipoprotein E ε2/ε3/ε4 polymorphisms and hypertension: a meta-analysis of six studies comprising 1812 cases and 1762 controls. Hypertens. Res. 32, 1060–1066 (2009).

    CAS  PubMed  Google Scholar 

  30. Eichner, J. E. et al. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am. J. Epidemiol. 155, 487–495 (2002).

    PubMed  Google Scholar 

  31. McCarron, M. O. et al. The apolipoprotein E epsilon2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage. J. Neuropathol. Exp. Neurol. 58, 711–718 (1999).

    CAS  PubMed  Google Scholar 

  32. Rost, N. S., Greenberg, S. M. & Rosand, J. The genetic architecture of intracerebral hemorrhage. Stroke 39, 2166–2173 (2008).

    PubMed  Google Scholar 

  33. Greenberg, S. M. et al. Association of apolipoprotein E ε2 and vasculopathy in cerebral amyloid angiopathy. Neurology 50, 961–965 (1998).

    CAS  PubMed  Google Scholar 

  34. Biffi, A. et al. Novel insights into the genetics of intracerebral hemorrhage. Stroke 44, S137 (2013).

    PubMed  Google Scholar 

  35. Biffi, A. et al. Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology 78, 334–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hazrati, L. N. et al. Genetic association of CR1 with Alzheimer's disease: a tentative disease mechanism. Neurobiol. Aging 33, 2949.e5–2949.e12 (2012).

    CAS  Google Scholar 

  37. Misra, U. K., Kalita, J. & Somarajan, B. I. Recurrent intracerebral hemorrhage in patients with hypertension is associated with APOE gene polymorphism: a preliminary study. J. Stroke Cerebrovasc. Dis. 22, 758–763 (2013).

    PubMed  Google Scholar 

  38. Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–521 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Falcone, G. J. et al. Burden of risk alleles for hypertension increases risk of intracerebral hemorrhage. Stroke 43, 2877–2883 (2012).

    PubMed  PubMed Central  Google Scholar 

  40. Erdos, E. G. The ACE and I: how ACE inhibitors came to be. FASEB J. 20, 1034–1038 (2006).

    CAS  PubMed  Google Scholar 

  41. Rigat, B. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar, A. et al. Association between angiotensin converting enzyme gene insertion/deletion polymorphism and intracerebral haemorrhage in North Indian population: a case control study and meta-analysis. Neurol. Sci. 35, 1983–1990 (2014).

    CAS  PubMed  Google Scholar 

  43. Suehiro, T. et al. Increased amount of the angiotensin-converting enzyme (ACE) mRNA originating from the ACE allele with deletion. Hum. Genet. 115, 91–96 (2004).

    CAS  PubMed  Google Scholar 

  44. Kalita, J., Misra, U. K., Bindu, I. S., Kumar, B. & Mittal, B. Angiotensin-converting enzyme (rs4646994) and α ADDUCIN (rs4961) gene polymorphisms' study in primary spontaneous intracerebral hemorrhage. Neurol. India 59, 41–46 (2011).

    CAS  PubMed  Google Scholar 

  45. Huang, Y., Li, G., Lan, H., Zhao, G. & Huang, C. Angiotensin-converting enzyme insertion/deletion gene polymorphisms and risk of intracerebral hemorrhage: a meta-analysis of epidemiologic studies. J. Renin Angiotensin Aldosterone Syst. 15, 32–38 (2014).

    CAS  PubMed  Google Scholar 

  46. Peck, G. et al. The genetics of primary haemorrhagic stroke, subarachnoid haemorrhage and ruptured intracranial aneurysms in adults. PLoS ONE 3, e3691 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Alsafar, H. et al. Association of angiotensin converting enzyme insertion-deletion polymorphism with hypertension in emiratis with type 2 diabetes mellitus and its interaction with obesity status. Dis. Markers 2015, 536041 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Ramachandran, V. et al. Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene with essential hypertension and type 2 diabetes mellitus in Malaysian subjects. J. Renin Angiotensin Aldosterone Syst. 9, 208–214 (2008).

    CAS  PubMed  Google Scholar 

  49. Chiang, F. T. et al. Lack of association of the angiotensin converting enzyme polymorphism with essential hypertension in a Chinese population. Am. J. Hypertens. 10, 197–201 (1997).

    CAS  PubMed  Google Scholar 

  50. Vassilikioti, S. et al. Angiotensin converting enzyme gene polymorphism is not related to essential hypertension in a Greek population. Am. J. Hypertens. 9, 700–702 (1996).

    CAS  PubMed  Google Scholar 

  51. Slowik, A. et al. DD genotype of ACE gene is a risk factor for intracerebral hemorrhage. Neurology 63, 359–361 (2004).

    CAS  PubMed  Google Scholar 

  52. Sun, Y. et al. Genetic associations of angiotensin-converting enzyme with primary intracerebral hemorrhage: a meta-analysis. PLoS ONE 8, e67402 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Z., Rao, P. J., Shillcutt, S. D. & Newman, W. H. Angiotensin II induces proliferation of human cerebral artery smooth muscle cells through a basic fibroblast growth factor (bFGF) dependent mechanism. Neurosci. Lett. 373, 38–41 (2005).

    CAS  PubMed  Google Scholar 

  54. Lee, Y. H., Choi, S. J., Ji, J. D. & Song, G. G. Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to vasculitis: a meta-analysis. J. Renin Angiotensin Aldosterone Syst. 13, 196–201 (2012).

    CAS  PubMed  Google Scholar 

  55. Kranzhofer, R. et al. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1623–1629 (1999).

    CAS  PubMed  Google Scholar 

  56. Hassanin, O. M., Moustafa, M. & El Masry, T. M. Association of insertion-deletion polymorphism of ACE gene and Alzheimer's disease in Egyptian patients. Egypt. J. Med. Hum. Genet. 15, 355–360 (2014).

    Google Scholar 

  57. Tan, R. Y. & Markus, H. S. Monogenic causes of stroke: now and the future. J. Neurol. http://dx.doi.org/10.1007/s00415-015-7794-4 (2015).

  58. Weng, Y. C. et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann. Neurol. 71, 470–477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jeanne, M. et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am. J. Hum. Genet. 90, 91–101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rannikmae, K. et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 84, 918–926 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Li, Z. et al. Elevated plasma homocysteine was associated with hemorrhagic and ischemic stroke, but methylenetetrahydrofolate reductase gene C677T polymorphism was a risk factor for thrombotic stroke: a multicenter case-control study in China. Stroke 34, 2085–2090 (2003).

    CAS  PubMed  Google Scholar 

  62. Zhu, X. Y. et al. Association between the methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and ischemic stroke in the Chinese population: a meta-analysis. Int. J. Neurosci. 125, 885–894 (2015).

    CAS  PubMed  Google Scholar 

  63. Nakata, Y. et al. Methylenetetrahydrofolate reductase gene polymorphism: relation to blood pressure and cerebrovascular disease. Am. J. Hypertens. 11, 1019–1023 (1998).

    CAS  PubMed  Google Scholar 

  64. Somarajan, B. I., Kalita, J., Mittal, B. & Misra, U. K. Evaluation of MTHFR C677T polymorphism in ischemic and hemorrhagic stroke patients. A case–control study in a Northern Indian population. J. Neurol. Sci. 304, 67–70 (2011).

    CAS  PubMed  Google Scholar 

  65. Ou, W. et al. Association of CVD candidate gene polymorphisms with ischemic stroke and cerebral hemorrhage in Chinese individuals. PLoS ONE 9, e105516 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Sazci, A., Ergul, E., Tuncer, N., Akpinar, G. & Kara, I. Methylenetetrahydrofolate reductase gene polymorphisms are associated with ischemic and hemorrhagic stroke: dual effect of MTHFR polymorphisms C677T and A1298C. Brain Res. Bull. 71, 45–50 (2006).

    CAS  PubMed  Google Scholar 

  67. Fang, X., Namba, H., Akamine, S. & Sugiyama, K. Methylenetetrahydrofolate reductase gene polymorphisms in patients with cerebral hemorrhage. Neurol. Res. 27, 73–76 (2005).

    CAS  PubMed  Google Scholar 

  68. Gao, S. et al. Association of MTHFR 677T variant allele with risk of intracerebral haemorrhage: a meta-analysis. J. Neurol. Sci. 323, 40–45 (2012).

    CAS  PubMed  Google Scholar 

  69. Vacek, T. P. et al. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc. Health Risk Manag. 11, 173–183 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Arnesen, E. et al. Serum total homocysteine and coronary heart disease. Int. J. Epidemiol. 24, 704–709 (1995).

    CAS  PubMed  Google Scholar 

  71. Homocysteine Studies, C. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288, 2015–2022 (2002).

    Google Scholar 

  72. Lai, W. K. & Kan, M. Y. Homocysteine-induced endothelial dysfunction. Ann. Nutr. Metab. 67, 1–12 (2015).

    CAS  PubMed  Google Scholar 

  73. Li, P. & Qin, C. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and susceptibility to ischemic stroke: a meta-analysis. Gene 535, 359–364 (2014).

    CAS  PubMed  Google Scholar 

  74. Kumar, A. et al. Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR gene) with ischemic stroke: a meta-analysis. Neurol. Res. 37, 568–577 (2015).

    CAS  PubMed  Google Scholar 

  75. Zanin, R. F. et al. Pathological concentrations of homocysteine increases IL-1β production in macrophages in a P2X7, NF-κB, and erk-dependent manner. Purinerg. Signal. (2015).

  76. Falcone, G. J., Malik, R., Dichgans, M. & Rosand, J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 13, 405–418 (2014).

    PubMed  Google Scholar 

  77. Schulze, H. et al. Interactions between the megakaryocyte/platelet-specific β1 tubulin and the secretory leukocyte protease inhibitor SLPI suggest a role for regulated proteolysis in platelet functions. Blood 104, 3949–3957 (2004).

    CAS  PubMed  Google Scholar 

  78. Navarro-Nunez, L. et al. The association of the β1-tubulin Q43P polymorphism with intracerebral hemorrhage in men. Haematologica 92, 513–518 (2007).

    CAS  PubMed  Google Scholar 

  79. Corral, J., Iniesta, J. A., Gonzalez-Conejero, R., Villalon, M. & Vicente, V. Polymorphisms of clotting factors modify the risk for primary intracranial hemorrhage. Blood 97, 2979–2982 (2001).

    CAS  PubMed  Google Scholar 

  80. Jagiella, J. et al. The FGA Thr312Ala polymorphism and risk of intracerebral haemorrhage in Polish and Greek populations. Neurol. Neurochir. Pol. 48, 105–110 (2014).

    PubMed  Google Scholar 

  81. Ko, Y. L. et al. Functional polymorphisms of FGA, encoding α fibrinogen, are associated with susceptibility to venous thromboembolism in a Taiwanese population. Hum. Genet. 119, 84–91 (2006).

    CAS  PubMed  Google Scholar 

  82. Lee, J. D. et al. Genetic polymorphism of LDLR (rs688) is associated with primary intracerebral hemorrhage. Curr. Neurovasc Res. 11, 10–15 (2014).

    CAS  PubMed  Google Scholar 

  83. Martinelli, N. et al. Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile. Blood 116, 5688–5697 (2010).

    CAS  PubMed  Google Scholar 

  84. Ishikawa, S. et al. Inverse association between serum lipoprotein(a) and cerebral hemorrhage in the Japanese population. Thromb. Res. 131, e54–e58 (2013).

    CAS  PubMed  Google Scholar 

  85. Nielsen, L. B., Gronholdt, M. L., Schroeder, T. V., Stender, S. & Nordestgaard, B. G. In vivo transfer of lipoprotein(a) into human atherosclerotic carotid arterial intima. Arterioscler. Thromb. Vasc. Biol. 17, 905–911 (1997).

    CAS  PubMed  Google Scholar 

  86. Kronenberg, F. et al. Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis: prospective results from the Bruneck study. Circulation 100, 1154–1160 (1999).

    CAS  PubMed  Google Scholar 

  87. Trommsdorff, M. et al. A pentanucleotide repeat polymorphism in the 5′ control region of the apolipoprotein(a) gene is associated with lipoprotein(a) plasma concentrations in Caucasians. J. Clin. Invest. 96, 150–157 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sun, L. et al. Pentanucleotide TTTTA repeat polymorphism of apolipoprotein(a) gene and plasma lipoprotein(a) are associated with ischemic and hemorrhagic stroke in Chinese: a multicenter case–control study in China. Stroke 34, 1617–1622 (2003).

    CAS  PubMed  Google Scholar 

  89. Rosenberg, G. A. Matrix metalloproteinases in neuroinflammation. Glia 39, 279–291 (2002).

    PubMed  Google Scholar 

  90. Yamada, Y. et al. Genetic risk for ischemic and hemorrhagic stroke. Arterioscler. Thromb. Vasc. Biol. 26, 1920–1925 (2006).

    CAS  PubMed  Google Scholar 

  91. Silva, Y. et al. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 36, 86–91 (2005).

    PubMed  Google Scholar 

  92. Tuttolomondo, A., Pecoraro, R. & Pinto, A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des. Devel. Ther. 8, 2221–2238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, Y. C. et al. Association of TNF-α gene with spontaneous deep intracerebral hemorrhage in the Taiwan population: a case control study. BMC Neurol. 10, 41 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Fang, H. Y., Ko, W. J. & Lin, C. Y. Inducible heat shock protein 70, interleukin-18, and tumor necrosis factor alpha correlate with outcomes in spontaneous intracerebral hemorrhage. J. Clin. Neurosci. 14, 435–441 (2007).

    CAS  PubMed  Google Scholar 

  95. Zhang, Q., Yu, N. & Lee, C. Vicious cycle of TGF-β signaling in tumor progression and metastasis. Am. J. Clin. Exp. Urol. 2, 149–155 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Lim, Y. H. et al. Association between TGFBR2 gene polymorphism (rs2228048, Asn389Asn) and intracerebral hemorrhage in Korean population. Immunol. Invest. 40, 569–580 (2011).

    CAS  PubMed  Google Scholar 

  97. Liu, Z. et al. ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis. PLoS ONE 9, e86273 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Alberts, M. J. et al. Endoglin gene polymorphism as a risk factor for sporadic intracerebral hemorrhage. Ann. Neurol. 41, 683–686 (1997).

    CAS  PubMed  Google Scholar 

  99. Peng, F. W. et al. Purification of recombinant human interferon-epsilon and oligonucleotide microarray analysis of interferon-epsilon-regulated genes. Protein Expr. Purif. 53, 356–362 (2007).

    CAS  PubMed  Google Scholar 

  100. Lokeshwar, V. B. & Selzer, M. G. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel, and vein-derived human endothelial cells. J. Biol. Chem. 275, 27641–27649 (2000).

    CAS  PubMed  Google Scholar 

  101. Kim, S. K. et al. T allele of nonsense polymorphism (rs2039381, Gln71Stop) of interferon-ε is a risk factor for the development of intracerebral hemorrhage. Hum. Immunol. 75, 88–90 (2014).

    CAS  PubMed  Google Scholar 

  102. Malemud, C. J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci. 11, 1696–1701 (2006).

    CAS  PubMed  Google Scholar 

  103. Reuter, B. et al. TIMP-2 gene polymorphism is associated with intracerebral hemorrhage. Cerebrovasc. Dis. 28, 558–563 (2009).

    CAS  PubMed  Google Scholar 

  104. Chang, J. J., Emanuel, B. A., Mack, W. J., Tsivgoulis, G. & Alexandrov, A. V. Matrix metalloproteinase-9: dual role and temporal profile in intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 23, 2498–2505 (2014).

    PubMed  Google Scholar 

  105. Wang, H. X. et al. TIMP-1 polymorphisms in a Chinese Han population with intracerebral hemorrhage. Int. J. Neurosci. 124, 61–67 (2014).

    CAS  PubMed  Google Scholar 

  106. Huber, M. D., Vesely, P. W., Datta, K. & Gerace, L. Erlins restrict SREBP activation in the ER and regulate cellular cholesterol homeostasis. J. Cell Biol. 203, 427–436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yoshida, T. et al. Association of genetic variants with hemorrhagic stroke in Japanese individuals. Int. J. Mol. Med. 25, 649–656 (2010).

    CAS  PubMed  Google Scholar 

  108. Moniz, S. et al. Protein kinase WNK2 inhibits cell proliferation by negatively modulating the activation of MEK1/ERK1/2. Oncogene 26, 6071–6081 (2007).

    CAS  PubMed  Google Scholar 

  109. Zhang, F., Wen, Y. & Guo, X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet. 23, R40–R46 (2014).

    CAS  PubMed  Google Scholar 

  110. Ginsburg, G. S. & Kuderer, N. M. Comparative effectiveness research, genomics-enabled personalized medicine, and rapid learning health care: a common bond. J. Clin. Oncol. 30, 4233–4242 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Myers, C. T. & Mefford, H. C. Advancing epilepsy genetics in the genomic era. Genome Med. 7, 91 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Boycott, K. M., Vanstone, M. R., Bulman, D. E. & MacKenzie, A. E. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 14, 681–691 (2013).

    CAS  PubMed  Google Scholar 

  113. Wu, C. H. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vissers, L. E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    CAS  PubMed  Google Scholar 

  115. Radmanesh, F. et al. Rare coding variation and risk of intracerebral hemorrhage. Stroke 46, 2299–2301 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Bevan, S. & Markus, H. S. Genetics of common polygenic ischaemic stroke: current understanding and future challenges. Stroke Res. Treat. 2011, 179061 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. Stamova, B. et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke 41, 2171–2177 (2010).

    PubMed  PubMed Central  Google Scholar 

  118. Jickling, G. C. et al. microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS ONE 9, e99283 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M.C. researched data for the article. All authors provided substantial contributions to discussion of content, writing, and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Charles J. Prestigiacomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Details of genetic variants associated with ICH with strongest (+++) level of available evidence (DOC 62 kb)

Supplementary Table 2

Details of genetic variants associated with ICH with intermediate (++) evidence (DOC 70 kb)

Supplementary Table 3

Data of genetic variants with weak (+) association with ICH (DOC 60 kb)

Supplementary Table 4

Details of genetic variants with single positive study with n <100 individuals (DOC 51 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpenter, A., Singh, I., Gandhi, C. et al. Genetic risk factors for spontaneous intracerebral haemorrhage. Nat Rev Neurol 12, 40–49 (2016). https://doi.org/10.1038/nrneurol.2015.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing