Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of neuroplasticity in dopaminergic therapy for Parkinson disease

Abstract

Dopamine replacement is a mainstay of therapeutic strategies for Parkinson disease (PD). The motor response to therapy involves an immediate improvement in motor function, known as the short-duration response (SDR), followed by a long-duration response (LDR) that develops more slowly, over weeks. Here, we review evidence in patients and animal models suggesting that dopamine-dependent corticostriatal plasticity, and retention of such plasticity in the absence of dopamine, are the mechanisms underlying the LDR. Conversely, experience-dependent aberrant plasticity that develops slowly under reduced dopamine levels could contribute substantially to PD motor symptoms before initiation of dopamine replacement therapy. We place these findings in the context of the role of dopamine in basal ganglia function and corticostriatal plasticity, and provide a new framework suggesting that therapies that enhance the LDR could be more effective than those targeting the SDR. We further propose that changes in neuroplasticity constitute a form of disease modification that is distinct from prevention of degeneration, and could be responsible for some of the unexplained disease-modifying effects of certain therapies. Understanding such plasticity could provide novel therapeutic approaches that combine rehabilitation and pharmacotherapy for treatment of neurological and psychiatric disorders involving basal ganglia dysfunction.

Key Points

  • Dopaminergic loss and therapy in Parkinson disease (PD) leads to changes in synaptic plasticity, particularly at cortiostriatal synapses

  • The motor response to dopamine therapy involves acute improvement in motor performance (short-duration response [SDR]) and a more gradual improvement in motor function (long-duration response [LDR]) that develops over weeks

  • Clinical evidence shows that the LDR is a critical component of motor response fluctuations and may be a more effective target of therapy than the SDR

  • Motor learning mediated by synaptic plasticity in the basal ganglia circuitry results in the LDR in an animal model of PD

  • Synergistic interaction between effects of physical activity and dopamine signalling contributes to the LDR

  • Enhancement of motor learning and prevention of aberrant plasticity and learned inhibitory behaviour could be a novel approach to disease modification in PD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The long-duration response and short-duration response to levodopa.
Figure 2: Dopaminergic modulation of striatal cell excitability and corticostriatal plasticity.
Figure 3: Rotarod performance during and after levodopa treatment.

Similar content being viewed by others

References

  1. Birkmayer, W. & Hornykiewicz, O. Der L-3, 4-Dioxyphenylalanin (L-DOPA) effekt bei der Parkinson-Akinese [German]. Wien. Klin. Wochenschr. 73, 787–788 (1961).

    CAS  PubMed  Google Scholar 

  2. Fahn, S. et al. Levodopa and the progression of Parkinson's disease. N. Engl. J. Med. 351, 2498–2508 (2004).

    CAS  PubMed  Google Scholar 

  3. Nutt, J. G., Woodward, W. R., Carter, J. H. & Gancher, S. T. Effect of long-term therapy on the pharmacodynamics of levodopa. Relation to on-off phenomenon. Arch. Neurol. 49, 1123–1130 (1992).

    CAS  PubMed  Google Scholar 

  4. Ahlskog, J. E. & Muenter, M. D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord. 16, 448–458 (2001).

    CAS  PubMed  Google Scholar 

  5. Jankovic, J. Motor fluctuations and dyskinesias in Parkinson's disease: clinical manifestations. Mov. Disord. 20 (Suppl. 11), S11–S16 (2005).

    PubMed  Google Scholar 

  6. Pahwa, R. et al. Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66, 983–995 (2006).

    CAS  PubMed  Google Scholar 

  7. Zigmond, M. J., Abercrombie, E. D., Berger, T. W., Grace, A. A. & Stricker, E. M. Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci. 13, 290–296 (1990).

    CAS  PubMed  Google Scholar 

  8. Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    CAS  PubMed  Google Scholar 

  9. Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990).

    CAS  PubMed  Google Scholar 

  10. Bezard, E., Gross, C. E. & Brotchie, J. M. Presymptomatic compensation in Parkinson's disease is not dopamine-mediated. Trends Neurosci. 26, 215–221 (2003).

    CAS  PubMed  Google Scholar 

  11. Schapira, A. H. & Obeso, J. Timing of treatment initiation in Parkinson's disease: a need for reappraisal? Ann. Neurol. 59, 559–562 (2006).

    PubMed  Google Scholar 

  12. Hughes, A. J., Lees, A. J. & Stern, G. M. Challenge tests to predict the dopaminergic response in untreated Parkinson's disease. Neurology 41, 1723–1725 (1991).

    CAS  PubMed  Google Scholar 

  13. Hauser, R. A., Auinger, P. & Oakes, D. Levodopa response in early Parkinson's disease. Mov. Disord. 24, 2328–2336 (2009).

    PubMed  Google Scholar 

  14. Barbato, L. et al. The long-duration action of levodopa may be due to a postsynaptic effect. Clin. Neuropharmacol. 20, 394–401 (1997).

    CAS  PubMed  Google Scholar 

  15. Nutt, J. G., Carter, J. H., Lea, E. S. & Sexton, G. J. Evolution of the response to levodopa during the first 4 years of therapy. Ann. Neurol. 51, 686–693 (2002).

    CAS  PubMed  Google Scholar 

  16. Zappia, M. et al. Loss of long-duration response to levodopa over time in PD: implications for wearing-off. Neurology 52, 763–767 (1999).

    CAS  PubMed  Google Scholar 

  17. Lee, E. A., Lee, W. Y., Kim, Y. S. & Kang, U. J. The effects of chronic L-DOPA therapy on pharmacodynamic parameters in a rat model of motor response fluctuations. Exp. Neurol. 184, 304–312 (2003).

    CAS  PubMed  Google Scholar 

  18. Quattrone, A. & Zappia, M. Oral pulse levodopa therapy in mild Parkinson's disease. Neurology 43, 1161–1166 (1993).

    CAS  PubMed  Google Scholar 

  19. Cotzias, G. C., Papavasiliou, P. S. & Gellene, R. Modification of parkinsonism—chronic treatment with L-dopa. N. Engl. J. Med. 280, 337–345 (1969).

    CAS  PubMed  Google Scholar 

  20. Muenter, M. D. & Tyce, G. M. L-dopa therapy of Parkinson's disease: plasma L-dopa concentration, therapeutic response, and side effects. Mayo Clin. Proc. 46, 231–239 (1971).

    CAS  PubMed  Google Scholar 

  21. Kang, U. J. & Auinger, P. Activity enhances dopaminergic long-duration response in Parkinson disease. Neurology 78, 1146–1149 (2012).

    CAS  PubMed  Google Scholar 

  22. Nutt, J. G., Carter, J. H., Van Houten, L. & Woodward, W. R. Short- and long-duration responses to levodopa during the first year of levodopa therapy. Ann. Neurol. 42, 349–355 (1997).

    CAS  PubMed  Google Scholar 

  23. Nutt, J. G. & Holford, N. H. The response to levodopa in Parkinson's disease: imposing pharmacological law and order. Ann. Neurol. 39, 561–573 (1996).

    CAS  PubMed  Google Scholar 

  24. Stocchi, F., Vacca, L., Berardelli, A., De Pandis, F. & Ruggieri, S. Long-duration effect and the postsynaptic compartment: study using a dopamine agonist with a short half-life. Mov. Disord. 16, 301–305 (2001).

    CAS  PubMed  Google Scholar 

  25. Hauser, R. A. & Holford, N. H. Quantitative description of loss of clinical benefit following withdrawal of levodopa-carbidopa and bromocriptine in early Parkinson's disease. Mov. Disord. 17, 961–968 (2002).

    PubMed  Google Scholar 

  26. Zappia, M. et al. Long-duration response to levodopa influences the pharmacodynamics of short-duration response in Parkinson's disease. Ann. Neurol. 42, 245–248 (1997).

    CAS  PubMed  Google Scholar 

  27. Clissold, B. G., McColl, C. D., Reardon, K. R., Shiff, M. & Kempster, P. A. Longitudinal study of the motor response to levodopa in Parkinson's disease. Mov. Disord. 21, 2116–2121 (2006).

    PubMed  Google Scholar 

  28. Nisenbaum, L. K., Crowley, W. R. & Kitai, S. T. Partial striatal dopamine depletion differentially affects striatal substance P and enkephalin messenger RNA expression. Brain Res. Mol. Brain Res. 37, 209–216 (1996).

    CAS  PubMed  Google Scholar 

  29. Iravani, M. M., McCreary, A. C. & Jenner, P. Striatal plasticity in Parkinson's disease and L-dopa induced dyskinesia. Parkinsonism Relat. Disord. 18 (Suppl. 1), S123–S125 (2012).

    PubMed  Google Scholar 

  30. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    CAS  PubMed  Google Scholar 

  31. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 18, 63–64 (1995).

    CAS  PubMed  Google Scholar 

  32. DeLong, M. & Wichmann, T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat. Disord. 15 (Suppl. 3), S237–S240 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003).

    PubMed  Google Scholar 

  34. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hernandez-Lopez, S. et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1–IP3–calcineurin-signaling cascade. J. Neurosci. 20, 8987–8995 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nicola, S. M., Surmeier, J. & Malenka, R. C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000).

    CAS  PubMed  Google Scholar 

  37. Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007).

    CAS  PubMed  Google Scholar 

  38. Bamford, N. S. et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42, 653–663 (2004).

    CAS  PubMed  Google Scholar 

  39. Cepeda, C. et al. Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J. Neurophysiol. 85, 659–670 (2001).

    CAS  PubMed  Google Scholar 

  40. Calabresi, P., Picconi, B., Tozzi, A. & Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219 (2007).

    CAS  PubMed  Google Scholar 

  41. Centonze, D. et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 23, 8506–8512 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lovinger, D. M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951–961 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Reynolds, J. N. & Wickens, J. R. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15, 507–521 (2002).

    PubMed  Google Scholar 

  44. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  45. Surmeier, D. J., Plotkin, J. & Shen, W. Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr. Opin. Neurobiol. 19, 621–628 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pawlak, V. & Kerr, J. N. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci. 28, 2435–2446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

    CAS  PubMed  Google Scholar 

  49. Costa, R. M., Cohen, D. & Nicolelis, M. A. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14, 1124–1134 (2004).

    CAS  PubMed  Google Scholar 

  50. Dang, M. T. et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl Acad. Sci. USA 103, 15254–15259 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333–341 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ogura, T. et al. Impaired acquisition of skilled behavior in rotarod task by moderate depletion of striatal dopamine in a pre-symptomatic stage model of Parkinson's disease. Neurosci. Res. 51, 299–308 (2005).

    PubMed  Google Scholar 

  53. Dowd, E. & Dunnett, S. B. Movement without dopamine: striatal dopamine is required to maintain but not to perform learned actions. Biochem. Soc. Trans. 35, 428–432 (2007).

    CAS  PubMed  Google Scholar 

  54. Kreitzer, A. C. & Malenka, R. C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    CAS  PubMed  Google Scholar 

  55. van den Munckhof, P. et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130, 2535–2542 (2003).

    CAS  PubMed  Google Scholar 

  56. Nunes, I., Tovmasian, L. T., Silva, R. M., Burke, R. E. & Goff, S. P. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc. Natl Acad. Sci. USA 100, 4245–4250 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hwang, D. Y. et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J. Neurosci. 25, 2132–2137 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Beeler, J. A., Cao, Z. F., Kheirbek, M. A. & Zhuang, X. Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology 34, 1149–1161 (2009).

    CAS  PubMed  Google Scholar 

  59. Beeler, J. A. et al. Dopamine-dependent motor learning: insight into levodopa's long-duration response. Ann. Neurol. 67, 639–647 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Beeler, J. A. et al. A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson's disease. Cell Rep. 2, 1747–1761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wiecki, T. V., Riedinger, K., von Ameln-Mayerhofer, A., Schmidt, W. J. & Frank, M. J. A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology (Berl.) 204, 265–277 (2009).

    CAS  Google Scholar 

  62. Nutt, J. G. Pharmacokinetics and pharmacodynamics of levodopa. Mov. Disord. 23 (Suppl. 3), S580–S584 (2008).

    PubMed  Google Scholar 

  63. Zappia, M. & Nicoletti, A. The role of the long-duration response to levodopa in Parkinson's disease. J. Neurol. 257 (Suppl. 2), S284–S287 (2010).

    PubMed  Google Scholar 

  64. Zappia, M. et al. The long-duration response to L-dopa in the treatment of early PD. Neurology 54, 1910–1915 (2000).

    CAS  PubMed  Google Scholar 

  65. Simola, N., Di Chiara, G., Daniels, W. M., Schallert, T. & Morelli, M. Priming of rotational behavior by a dopamine receptor agonist in hemiparkinsonian rats: movement-dependent induction. Neuroscience 158, 1625–1631 (2009).

    CAS  PubMed  Google Scholar 

  66. Olanow, C. W. et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N. Engl. J. Med. 361, 1268–1278 (2009).

    CAS  PubMed  Google Scholar 

  67. Ross, G. W. et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283, 2674–2679 (2000).

    CAS  PubMed  Google Scholar 

  68. Bagetta, V. et al. Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson's disease. J. Neurosci. 31, 12513–12522 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kojovic, M. et al. Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology 78, 1441–1448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Picconi, B. et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat. Neurosci. 6, 501–506 (2003).

    CAS  PubMed  Google Scholar 

  71. Belujon, P., Lodge, D. J. & Grace, A. A. Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Mov. Disord. 25, 1568–1576 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Rothwell, J. Transcranial magnetic stimulation as a method for investigating the plasticity of the brain in Parkinson's disease and dystonia. Parkinsonism Relat. Disord. 13 (Suppl. 3), S417–S420 (2007).

    PubMed  Google Scholar 

  73. Gilio, F. et al. Repetitive magnetic stimulation of cortical motor areas in Parkinson's disease: implications for the pathophysiology of cortical function. Mov. Disord. 17, 467–473 (2002).

    CAS  PubMed  Google Scholar 

  74. Kishore, A., Joseph, T., Velayudhan, B., Popa, T. & Meunier, S. Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de novo Parkinson's disease. Clin. Neurophysiol. 123, 822–828 (2012).

    PubMed  Google Scholar 

  75. Morgante, F., Espay, A. J., Gunraj, C., Lang, A. E. & Chen, R. Motor cortex plasticity in Parkinson's disease and levodopa-induced dyskinesias. Brain 129, 1059–1069 (2006).

    PubMed  Google Scholar 

  76. Suppa, A. et al. Lack of LTP-like plasticity in primary motor cortex in Parkinson's disease. Exp. Neurol. 227, 296–301 (2011).

    CAS  PubMed  Google Scholar 

  77. Ueki, Y. et al. Altered plasticity of the human motor cortex in Parkinson's disease. Ann. Neurol. 59, 60–71 (2006).

    PubMed  Google Scholar 

  78. Buhmann, C. et al. Abnormal excitability of premotor–motor connections in de novo Parkinson's disease. Brain 127, 2732–2746 (2004).

    CAS  PubMed  Google Scholar 

  79. Mir, P. et al. Dopaminergic drugs restore facilitatory premotor–motor interactions in Parkinson disease. Neurology 64, 1906–1912 (2005).

    CAS  PubMed  Google Scholar 

  80. Luft, A. R. & Schwarz, S. Dopaminergic signals in primary motor cortex. Int. J. Dev. Neurosci. 27, 415–421 (2009).

    CAS  PubMed  Google Scholar 

  81. Huang, Y. Z., Rothwell, J. C., Lu, C. S., Chuang, W. L. & Chen, R. S. Abnormal bidirectional plasticity-like effects in Parkinson's disease. Brain 134, 2312–2320 (2011).

    PubMed  Google Scholar 

  82. Barbin, L. et al. Non-homogeneous effect of levodopa on inhibitory circuits in Parkinson's disease and dyskinesia. Parkinsonism Relat. Disord. 19, 165–170 (2013).

    PubMed  Google Scholar 

  83. Fregni, F., Simon, D. K., Wu, A. & Pascual-Leone, A. Non-invasive brain stimulation for Parkinson's disease: a systematic review and meta-analysis of the literature. J. Neurol. Neurosurg. Psychiatry 76, 1614–1623 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Helmich, R. C., Siebner, H. R., Bakker, M., Munchau, A. & Bloem, B. R. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson's disease. J. Neurol. Sci. 248, 84–96 (2006).

    PubMed  Google Scholar 

  85. Eggers, C., Fink, G. R. & Nowak, D. A. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson's disease. J. Neurol. 257, 1669–1674 (2010).

    PubMed  Google Scholar 

  86. Rothkegel, H., Sommer, M., Rammsayer, T., Trenkwalder, C. & Paulus, W. Training effects outweigh effects of single-session conventional rTMS and theta burst stimulation in PD patients. Neurorehabil. Neural Repair 23, 373–381 (2009).

    PubMed  Google Scholar 

  87. Zamir, O., Gunraj, C., Ni, Z., Mazzella, F. & Chen, R. Effects of theta burst stimulation on motor cortex excitability in Parkinson's disease. Clin. Neurophysiol. 123, 815–821 (2012).

    PubMed  Google Scholar 

  88. Teo, J. T., Edwards, M. J. & Bhatia, K. Tardive dyskinesia is caused by maladaptive synaptic plasticity: a hypothesis. Mov. Disord. 27, 2015–1215 (2012).

    Google Scholar 

  89. Michalon, A. et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    CAS  PubMed  Google Scholar 

  91. Welch, J. M. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ting, J. T., Peca, J. & Feng, G. Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu. Rev. Neurosci. 35, 49–71 (2012).

    CAS  PubMed  Google Scholar 

  93. Saka, E. & Graybiel, A. M. Pathophysiology of Tourette's syndrome: striatal pathways revisited. Brain Dev. 25 (Suppl. 1), S15–S19 (2003).

    PubMed  Google Scholar 

  94. Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    CAS  PubMed  Google Scholar 

  95. Graybiel, A. M. The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15, 638–644 (2005).

    CAS  PubMed  Google Scholar 

  96. Shmuelof, L. & Krakauer, J. W. Are we ready for a natural history of motor learning? Neuron 72, 469–476 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).

    CAS  PubMed  Google Scholar 

  98. Imamizu, H. et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403, 192–195 (2000).

    CAS  PubMed  Google Scholar 

  99. Donchin, O. et al. Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J. Neurophysiol. 107, 134–147 (2012).

    PubMed  Google Scholar 

  100. Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain 119, 1183–1198 (1996).

    PubMed  Google Scholar 

  101. Morton, S. M. & Bastian, A. J. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J. Neurosci. 26, 9107–9116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Smith, M. A. & Shadmehr, R. Intact ability to learn internal models of arm dynamics in Huntington's disease but not cerebellar degeneration. J. Neurophysiol. 93, 2809–2821 (2005).

    PubMed  Google Scholar 

  103. Mazzoni, P. & Wexler, N. S. Parallel explicit and implicit control of reaching. PLoS ONE 4, e7557 (2009).

    PubMed  PubMed Central  Google Scholar 

  104. Marinelli, L. et al. Learning and consolidation of visuo-motor adaptation in Parkinson's disease. Parkinsonism Relat. Disord. 15, 6–11 (2009).

    PubMed  Google Scholar 

  105. Venkatakrishnan, A., Banquet, J. P., Burnod, Y. & Contreras-vidal, J. L. Parkinson's disease differentially affects adaptation to gradual as compared to sudden visuomotor distortions. Hum. Mov. Sci. 30, 760–769 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Hikosaka, O. et al. Parallel neural networks for learning sequential procedures. Trends Neurosci. 22, 464–471 (1999).

    CAS  PubMed  Google Scholar 

  107. Moisello, C. et al. The serial reaction time task revisited: a study on motor sequence learning with an arm-reaching task. Exp. Brain Res. 194, 143–155 (2009).

    PubMed  Google Scholar 

  108. Doyon, J. et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75 (2009).

    PubMed  Google Scholar 

  109. Badgaiyan, R. D., Fischman, A. J. & Alpert, N. M. Striatal dopamine release in sequential learning. Neuroimage 38, 549–556 (2007).

    PubMed  Google Scholar 

  110. Lappin, J. M. et al. Dopamine release in the human striatum: motor and cognitive tasks revisited. J. Cereb. Blood Flow Metab. 29, 554–564 (2009).

    CAS  PubMed  Google Scholar 

  111. Doyon, J. Motor sequence learning and movement disorders. Curr. Opin. Neurol. 21, 478–483 (2008).

    PubMed  Google Scholar 

  112. Sanes, J. N., Dimitrov, B. & Hallett, M. Motor learning in patients with cerebellar dysfunction. Brain 113, 103–120 (1990).

    PubMed  Google Scholar 

  113. Shmuelof, L. et al. Overcoming motor “forgetting” through reinforcement of learned actions. J. Neurosci. 32, 14617–14621 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    CAS  PubMed  Google Scholar 

  115. Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 21, 480–484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Muellbacher, W. et al. Early consolidation in human primary motor cortex. Nature 415, 640–644 (2002).

    CAS  PubMed  Google Scholar 

  117. Heindel, W. C., Butters, N. & Salmon, D. P. Impaired learning of a motor skill in patients with Huntington's disease. Behav. Neurosci. 102, 141–147 (1988).

    CAS  PubMed  Google Scholar 

  118. Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A. & Butters, N. Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. J. Neurosci. 9, 582–587 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gabrieli, J. D., Stebbins, G. T., Singh, J., Willingham, D. B. & Goetz, C. G. Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington's disease: evidence for dissociable memory systems in skill learning. Neuropsychology 11, 272–281 (1997).

    CAS  PubMed  Google Scholar 

  120. Soliveri, P., Brown, R. G., Jahanshahi, M. & Marsden, C. D. Effect of practice on performance of a skilled motor task in patients with Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 55, 454–460 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the NIH (NS062425 and NS070269 to X. Zhuang, NS052804 to P. Mazzoni, and NS062425 and NS064865 to U. J. Kang), the American Parkinson Disease Association (X. Zhuang and U. J. Kang), the Parkinson's Disease Foundation (P. Mazzoni), and the Michael J. Fox Foundation for Parkinson's Research (U. J. Kang).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of the article content, writing of the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Un Jung Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, X., Mazzoni, P. & Kang, U. The role of neuroplasticity in dopaminergic therapy for Parkinson disease. Nat Rev Neurol 9, 248–256 (2013). https://doi.org/10.1038/nrneurol.2013.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing