Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integration and analysis of genome-scale data from gliomas

Abstract

Primary brain tumors are a leading cause of cancer-related mortality among young adults and children. The most common primary malignant brain tumor, glioma, carries a median survival of only 14 months. Two major multi-institutional programs, the Glioma Molecular Diagnostic Initiative and The Cancer Genome Atlas, have pursued a comprehensive genomic characterization of a large number of clinical glioma samples using a variety of technologies to measure gene expression, chromosomal copy number alterations, somatic and germline mutations, DNA methylation, microRNA, and proteomic changes. Classification of gliomas on the basis of gene expression has revealed six major subtypes and provided insights into the underlying biology of each subtype. Integration of genome-wide data from different technologies has been used to identify many potential protein targets in this disease, while increasing the reliability and biological interpretability of results. Mapping genomic changes onto both known and inferred cellular networks represents the next level of analysis, and has yielded proteins with key roles in tumorigenesis. Ultimately, the information gained from these approaches will be used to create customized therapeutic regimens for each patient based on the unique genomic signature of the individual tumor. In this Review, we describe efforts to characterize gliomas using genomic data, and consider how insights gained from these analyses promise to increase understanding of the biological underpinnings of the disease and lead the way to new therapeutic strategies.

Key Points

  • Genomic analysis has revealed that gliomas fall into six subtypes, two of which have characteristics of oligodendrogliomas and four of which show poor survival

  • The glioma subtypes show distinct, but overlapping, patterns of mutations, copy number alterations, and gene expression

  • Integration of genomic data, such as gene expression, single nucleotide polymorphism chips, proteomics, microRNA, and epigenomics, increases the reliability and biological interpretability of results

  • Mapping of genomic data onto both known and inferred cellular networks reveals new insights into tumorigenesis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Techniques for analyzing gene expression data.
Figure 2: Copy number alteration detection using SNP chips.
Figure 3: Mapping genomic changes in glioma to known pathways.
Figure 4: Mapping genomic changes in glioma to inferred pathways.

Similar content being viewed by others

References

  1. Purow, B. & Schiff, D. Advances in the genetics of glioblastoma: are we reaching critical mass? Nat. Rev. Neurol. 5, 419–426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Goodwin, C. R. & Laterra, J. Neuro-oncology: unmasking the multiforme in glioblastoma. Nat. Rev. Neurol. 6, 304–305 (2010).

    CAS  PubMed  Google Scholar 

  3. Macdonald, T. J. et al. Expression profiling of medulloblastoma PDGFRA and the RAS/MAPK pathway. Nat. Genet. 29, 143–152 (2001).

    CAS  PubMed  Google Scholar 

  4. Nagarajan, R. P. & Costello, J. F. Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics 6 436–446 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson, J. P. et al. Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation. Oncogene 29, 335–344 (2010).

    CAS  PubMed  Google Scholar 

  6. Nevins, J. R. & Potti, A. Mining gene expression profiles: expression signatures as cancer phenotypes. Nat. Rev. Genet. 8, 601–609 (2007).

    CAS  PubMed  Google Scholar 

  7. Hedenfalk, I. et al. Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001).

    CAS  PubMed  Google Scholar 

  8. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  10. Institute for Genomics and Bioinformatics, University of California, Irvine. Cyber-T[online], (2010).

  11. Tso, C.-L. et al. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res. 66, 159–167 (2006).

    CAS  PubMed  Google Scholar 

  12. MacDonald, T. J. et al. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat. Genet. 29, 143–152 (2001).

    CAS  PubMed  Google Scholar 

  13. Sallinen, S. L. et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res. 60, 6617–6622 (2000).

    CAS  PubMed  Google Scholar 

  14. Rickman, D. S. et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 61, 6885–6891 (2001).

    CAS  PubMed  Google Scholar 

  15. Mischel, P. S. et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22, 2361–2373 (2003).

    CAS  PubMed  Google Scholar 

  16. Shai, R. et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22, 4918–4923 (2003).

    CAS  PubMed  Google Scholar 

  17. Freije, W. A. et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 64, 6503–6510 (2004).

    CAS  PubMed  Google Scholar 

  18. Tso, C. L. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res. 66, 159–167 (2006).

    CAS  PubMed  Google Scholar 

  19. Tso, C. L. Primary glioblastomas express mesenchymal stem-like properties. Mol. Cancer Res. 4, 607–619 (2006).

    CAS  PubMed  Google Scholar 

  20. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    CAS  PubMed  Google Scholar 

  21. Li, A. et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 69, 2091–2099 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, A. et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol. Cancer Res. 6, 21–30 (2008).

    CAS  PubMed  Google Scholar 

  23. Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, J. et al. Identification of a gene signature in cell cycle pathway for breast cancer prognosis using gene expression profiling data. BMC Med. Genomics 1, 39 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Freire, P. et al. Exploratory analysis of the copy number alterations in glioblastoma multiforme. PLoS ONE 3, e4076 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. de Tayrac, M. et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer 48, 55–68 (2009).

    CAS  PubMed  Google Scholar 

  28. Kotliarov, Y. et al. CNAReporter: a GenePattern pipeline for the generation of clinical reports of genomic alterations. BMC Med. Genomics 3, 11 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Kotliarov, Y. et al. Correlation analysis between single-nucleotide polymorphism and expression arrays in gliomas identifies potentially relevant target genes. Cancer Res. 69, 1596–1603 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bredel, M. et al. A network model of a cooperative genetic landscape in brain tumors. JAMA 302, 261–275 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wrensch, M. et al. Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat. Genet. 41, 905–908 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shete, S. et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat. Genet. 41, 899–904 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. LaFramboise, T., Dewal, N., Wilkins, K., Pe'er, I. & Freedman, M. L. Allelic selection of amplicons in glioblastoma revealed by combining somatic and germline analysis. PLoS Genet. 6, e1001086 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Asadi-Moghaddam, K., Chiocca, E. A. & Lawler, S. E. Potential role of miRNAs and their inhibitors in glioma treatment. Expert Rev. Anticancer Ther. 10, 1753–1762 (2010).

    CAS  PubMed  Google Scholar 

  35. Chiocca, E. A. & Lawler, S. E. The many functions of microRNAs in glioblastoma. World Neurosurg. 73, 598–601 (2010).

    PubMed  Google Scholar 

  36. Godlewski, J., Bronisz, A., Nowicki, M. O., Chiocca, E. A. & Lawler, S. microRNA-451: A conditional switch controlling glioma cell proliferation and migration. Cell Cycle 9, 2742–2748 (2010).

    CAS  PubMed  Google Scholar 

  37. Godlewski, J., Newton, H. B., Chiocca, E. A. & Lawler, S. E. MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ. 17, 221–228 (2010).

    CAS  PubMed  Google Scholar 

  38. Turner, J. D. et al. The many roles of microRNAs in brain tumor biology. Neurosurg. Focus 28, E3 (2010).

    PubMed  Google Scholar 

  39. Dong, H. et al. Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Syst. Biol. 4, 163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wuchty, S. et al. Prediction of associations between microRNAs and gene expression in glioma biology. PLoS ONE 6, e14681 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, T., Huang, W., Park, R., Park, P. J. & Johnson, M. D. A developmental taxonomy of glioblastoma defined and maintained by microRNAs. Cancer Res. 71, 3387–3399 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cadieux, B., Ching, T. T., VandenBerg, S. R. & Costello, J. F. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res. 66, 8469–8476 (2006).

    CAS  PubMed  Google Scholar 

  43. Fanelli, M. et al. Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment. Oncogene 27, 358–365 (2008).

    CAS  PubMed  Google Scholar 

  44. Alaminos, M. et al. EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res. 65, 2565–2571 (2005).

    CAS  PubMed  Google Scholar 

  45. Amatya, V. J., Naumann, U., Weller, M. & Ohgaki, H. TP53 promoter methylation in human gliomas. Acta Neuropathol. 110, 178–184 (2005).

    CAS  PubMed  Google Scholar 

  46. Baeza, N., Weller, M., Yonekawa, Y., Kleihues, P. & Ohgaki, H. PTEN methylation and expression in glioblastomas. Acta Neuropathol. 106, 479–485 (2003).

    CAS  PubMed  Google Scholar 

  47. Costello, J. F., Berger, M. S., Huang, H. S. & Cavenee, W. K. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 56, 2405–2410 (1996).

    CAS  PubMed  Google Scholar 

  48. Dallol, A. et al. Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene 22, 4611–4616 (2003).

    CAS  PubMed  Google Scholar 

  49. Foltz, G. et al. DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis. Oncogene 28, 2667–2677 (2009).

    CAS  PubMed  Google Scholar 

  50. Hesson, L. et al. Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene 23, 2408–2419 (2004).

    CAS  PubMed  Google Scholar 

  51. Veeriah, S. et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc. Natl Acad. Sci. USA 106, 9435–9440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mladkova, N. & Chakravarti, A. Molecular profiling in glioblastoma: prelude to personalized treatment. Curr. Oncol. Rep. 11, 53–61 (2009).

    CAS  PubMed  Google Scholar 

  53. Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, H. et al. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc. Natl Acad. Sci. USA 107, 2183–2188 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Niclou, S. P., Fack, F. & Rajcevic, U. Glioma proteomics: status and perspectives. J. Proteomics 73, 1823–1838 (2010).

    CAS  PubMed  Google Scholar 

  56. Huang, P. H., Xu, A. M. & White, F. M. Oncogenic EGFR signaling networks in glioma. Science Signaling 2, re6 (2009).

    PubMed  Google Scholar 

  57. Rich, J. N. et al. A genetically tractable model of human glioma formation. Cancer Res. 61, 3556–3560 (2001).

    CAS  PubMed  Google Scholar 

  58. Deighton, R. F., McGregor, R., Kemp, J., McCulloch, J. & Whittle, I. R. Glioma pathophysiology: insights emerging from proteomics. Brain Pathol. 20, 691–703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brennan, C. et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4, e7752 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Du, J. et al. Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol. 27, 77–83 (2009).

    CAS  PubMed  Google Scholar 

  61. Mir, S. E. et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18, 244–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kanehisha Laboratories. KEGG: Kyoto Encyclopedia of Genes and Genomes [online], (2010).

  63. BioCarta. BioCarta Pathways [online], (2010).

  64. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cerami, E., Demir, E., Schultz, N., Taylor, B. S. & Sander, C. Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 5, e8918 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Beckner, M. E. et al. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int. J. Cancer 126, 2282–2295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng, H. et al. PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas. Cancer Cell 17, 497–509 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wong, D. J. et al. Revealing targeted therapy for human cancer by gene module maps. Cancer Res. 68, 369–378 (2008).

    CAS  PubMed  Google Scholar 

  69. Keller, A. et al. A novel algorithm for detecting differentially regulated paths based on gene set enrichment analysis. Bioinformatics 25, 2787–2794 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bredel, M. et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res. 65, 8679–8689 (2005).

    CAS  PubMed  Google Scholar 

  71. Wuchty, S. et al. Gene pathways and subnetworks distinguish between major glioma subtypes and elucidate potential underlying biology. J. Biomed. Inform. 43, 945–952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Carro, M. S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Bozdag, S., Li, A., Wuchty, S. & Fine, H. A. FastMEDUSA: a parallelized tool to infer gene regulatory networks. Bioinformatics 26, 1792–1793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. FANTOM Consortium et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat. Genet. 41, 553–562 (2009).

  75. Cooper, L. A. D. et al. An integrative approach for in silico glioma research. IEEE Trans. Biomed. Eng. 57, 2617–2621 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. National Cancer Institute. REMBRANDT database [online], (2010).

  77. Madhavan, S. et al. Rembrandt: helping personalized medicine become a reality through integrative translational research. Mol. Cancer Res. 7, 157–167 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, A., Bozdag, S., Kotliarov, Y. & Fine, H. A. GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes. BMC Med. Inform. Decis. Mak. 10, 38 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. National Cancer Institute. caArray [online], (2011).

  80. National Cancer Institute. Cancer Genome Anatomy Project [online], (2011).

  81. National Cancer Institute. Cancer Central Clinical Database [online], (2011).

  82. National Cancer Institute. caCORE SDK [online], (2011).

  83. National Cancer Institute. caBIG [online], (2011).

  84. Broad Institute. GenePattern [online], (2011).

  85. National Cancer Institute. The Cancer Genome Atlas [online], (2011).

  86. CGAR Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 4 55, 1061–1068 (2008).

  87. Jones, A. R. et al. The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics. Nat. Biotechnol. 25, 1127–1133 (2007).

    CAS  PubMed  Google Scholar 

  88. Fenstermacher, D. et al. The Cancer Biomedical Informatics Grid (caBIG). Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 743–746 (2005).

    Google Scholar 

  89. Kakazu, K. K., Cheung, L. W. K. & Lynne, W. The Cancer Biomedical Informatics Grid (caBIG): pioneering an expansive network of information and tools for collaborative cancer research. Hawaii Med. J. 63, 273–275 (2004).

    PubMed  Google Scholar 

  90. Deus, H. F. et al. Exposing the Cancer Genome Atlas as a SPARQL endpoint. J. Biomed. Inform. 43, 998–1008 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gadaleta, E., Lemoine, N. R. & Chelala, C. Online resources of cancer data: barriers, benefits and lessons. Brief. Bioinform. 12, 52–63 (2010).

    PubMed  Google Scholar 

  92. Ovaska, K. et al. Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med. 2, 65 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. Schadt, E. E., Friend, S. H. & Shaywitz, D. A. A network view of disease and compound screening. Nat. Rev. Drug Discov. 8, 286–295 (2009).

    CAS  PubMed  Google Scholar 

  94. Colman, H. et al. A multigene predictor of outcome in glioblastoma. Neuro Oncol. 12, 49–57 (2010).

    CAS  PubMed  Google Scholar 

  95. Staunton, J. E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA 98, 10787–10792 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sos, M. L. et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J. Clin. Invest. 119, 1727–1740 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wallqvist, A., Rabow, A. A., Shoemaker, R. H., Sausville, E. A. & Covell, D. G. Establishing connections between microarray expression data and chemotherapeutic cancer pharmacology. Mol. Cancer Ther. 1, 311–320 (2002).

    CAS  PubMed  Google Scholar 

  99. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Riddick, G. et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 27, 220–224 (2011).

    CAS  PubMed  Google Scholar 

  101. Mori, S., Chang, J. T., Andrechek, E. R., Potti, A. & Nevins, J. R. Utilization of genomic signatures to identify phenotype-specific drugs. PLoS ONE 4, e6772 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. Nelander, S. et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol. 4, 216 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. Ring, B. Z., Chang, S., Ring, L. W., Seitz, R. S. & Ross, D. T. Gene expression patterns within cell lines are predictive of chemosensitivity. BMC Genomics 9, 74 (2008).

    PubMed  PubMed Central  Google Scholar 

  104. Hahn, C. K. et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc. Natl Acad. Sci. USA 105, 9751–9756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? Nat. Rev. Drug Discov. 6, 115–120 (2007).

    CAS  PubMed  Google Scholar 

  106. Wiedemeyer, W. R. et al. Pattern of retinoblastoma pathway inactivation dictates response to CDK4/6 inhibition in GBM. Proc. Natl Acad. Sci. USA 107, 11501–11506 (2010).

    PubMed  PubMed Central  Google Scholar 

  107. Diehn, M. et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc. Natl Acad. Sci. USA 105, 5213–5218 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Segal, E. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat. Biotechnol. 25, 675–680 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching, discussing, writing, reviewing and editing this manuscript.

Corresponding author

Correspondence to Howard A. Fine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddick, G., Fine, H. Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 7, 439–450 (2011). https://doi.org/10.1038/nrneurol.2011.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.100

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer