Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune system modulation of kidney regeneration—mechanisms and implications

Key Points

  • Inflammation and regeneration are tightly interlinked danger response programmes

  • The regenerative capacity of tissues is limited by cell necrosis, which triggers inflammation via release of damage-associated molecular patterns

  • The regenerative capacity of the kidney enables recovery from transient renal diseases; however, repetitive or persistent injuries and ongoing inflammation impair regeneration and promote tissue atrophy

  • As nephrons are independent structures, kidney disease outcomes depend on the balance between injury and inflammation as well as the intrinsic regenerative capacity of each individual nephron

  • Monocytic phagocyte and lymphocyte phenotypes are important determinants of humoral microenvironments, which determine the balance of proinflammatory and proregenerative mediators in the kidney

  • A three-step therapeutic approach involving removal of the injurious trigger, suppression of renal inflammation and enhancement of regenerative mechanisms could potentially improve outcomes of kidney disease

Abstract

The immune system is an important guardian of tissue homeostasis. In response to injury, resident and infiltrating immune cells orchestrate all phases of danger control, resolution of inflammation and tissue regeneration or scar formation. As mammalian postnatal kidneys are not capable of de novo nephrogenesis, recovery is limited to the regeneration or repair of existing nephrons. The regenerative capacity of the nephron varies between compartments; the epithelial cells of the tubule regenerate more efficiently than the structurally highly organized podocytes. Cells of the surrounding environment modulate nephron regeneration by secreting paracrine mediators. This Review discusses immune mediators and pathways that regulate the intrinsic regenerative capacity of the nephron. Eliminating injurious triggers, modulating renal inflammation and specifically enhancing the regenerative capacity of nephrons might be a promising strategy to improve long-term outcomes in patients with acute kidney injury and/or chronic kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term outcomes in kidney disease depend on the transient or persistent nature of the injurious trigger.
Figure 2: Intrarenal immune cells modulate tubule regeneration.

Similar content being viewed by others

References

  1. Davidson, A. J. Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr. Nephrol. 26, 1435–1443 (2011).

    Article  PubMed  Google Scholar 

  2. Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat. Rev. Nephrol. 9, 137–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature 453, 314–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lech, M. et al. Macrophage phenotype controls long-term AKI outcomes—kidney regeneration versus atrophy. J. Am. Soc. Nephrol. 25, 292–304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hagemann, J. H., Haegele, H., Müller, S. & Anders, H. J. Danger control programs cause tissue injury and remodeling. Int. J. Mol. Sci. 14, 11319–11346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okin, D. & Medzhitov, R. Evolution of inflammatory diseases. Curr. Biol. 22, R733–R740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sedeek, M., Nasrallah, R. Touyz, R. M. & Hébert, R. L. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J. Am. Soc. Nephrol. 24, 1512–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128, 325–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Linkermann, A., De Zen, F., Weinberg, J., Kuzendorf, U. & Krautwald, S. Programmed necrosis in acute kidney injury. Nephrol. Dial. Transplant. 27, 3412–3419 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anders, H. J. Toll-like receptors and danger signaling in kidney injury. J. Am. Soc. Nephrol. 21, 1270–1274 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ryu, M., Mulay, S. R., Miosge, N., Gross, O. & Anders, H. J. Tumour necrosis factor-α drives Alport glomerulosclerosis in mice by promoting podocyte apoptosis. J. Pathol. 226, 120–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Linkermann, A. et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81, 751–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Savill, J. Apoptosis and renal injury. Curr. Opin. Nephrol. Hypertens. 4, 263–269 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Lau, A. et al. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am. J. Transplant. 13, 2805–2818 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Linkermann, A. et al. The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J. Am. Soc. Nephrol. 24, 1545–1557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dolberg, O. J. & Levy, Y. Idiopathic aplastic anemia: Diagnosis and classification. Autoimmun. Rev. 13, 569–573 (2014).

    Article  PubMed  Google Scholar 

  24. McClatchey, A. I. & Yap, A. S. Contact inhibition (of proliferation) redux. Curr. Opin. Cell Biol. 24, 685–694 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Griffin, S. V., Pichler, R., Dittrich, M., Duruvasula, R. & Shankland, S. J. Cell cycle control in glomerular disease. Springer Semin. Immunopathol. 24, 441–457 (2003).

    Article  PubMed  Google Scholar 

  27. Lasagni, L., Lazzeri, E., Shankland, S. J., Anders, H. J. & Romagnani, P. Podocyte mitosis—a catastrophe. Curr. Mol. Med. 13, 13–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiggins, J. E. et al. Podocyte hypertrophy, “adaptation”, and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol. 16, 2953–2966 (2005).

    Article  PubMed  Google Scholar 

  29. Mulay, S. R. et al. Podocyte loss involves MDM2-driven mitotic catastrophe. J. Pathol. 230, 322–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Lasagni, L. et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 28, 1674–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Dirocco, D. et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F379–F388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pippin, J. W. et al. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J. Clin. Invest. 111, 877–885 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liapis, H., Romagnani, P. & Anders, H. J. New insights into the pathology of podocyte loss: mitotic catastrophe. Am. J. Pathol. 185, 1364–1374 (2013).

    Article  CAS  Google Scholar 

  35. Dotto, G. P. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat. Rev. Cancer 9, 587–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomasova, D., Mulay, S. R., Bruns, H. & Anders, H. J. P53-independent roles of MDM2 in NFκB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 14, 1097–1101 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mulay, S. R., Thomasova, D., Ryu, M. & Anders, H. J. MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney Int. 81, 1199–1211 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, D., Tan, R. J., Lin, L., Zhou, L. & Liu, Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 84, 509–520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sutton, T. A. et al. p53 is renoprotective after ischemic kidney injury by reducing inflammation. J. Am. Soc. Nephrol. 24, 113–124 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Susnik, N. et al. Ablation of proximal tubular suppressor of cytokine signaling 3 enhances tubular cell cycling and modifies macrophage phenotype during acute kidney injury. Kidney Int. http://dx.doi.org/10.1038/ki.2013.525.

  42. Nibbs, R. J. B. & Graham, G. J. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13, 815–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Ceradini, D. J. & Gurtner, G. C. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc. Med. 15, 57–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Tögel, F., Isaac, J., Hu, Z., Weiss, K. & Westenfelder, C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 67, 1772–1784 (2005).

    Article  PubMed  Google Scholar 

  46. Mazzinghi, B. et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J. Exp. Med. 205, 479–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kitaori, T. et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Reich, B. et al. Fibrocytes develop outside the kidney but contribute to renal fibrosis in a mouse model. Kidney Int. 84, 78–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Serhan, C. N. Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu. Rev. Immunol. 25, 101–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Jensen, J. U. et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients: secondary end point results from a 1,200 patient randomised trial. BMJ Open 2, e000635 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Anders, H. J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Gunthner, R., Kumar, V. R., Lorenz, G., Anders, H. J. & Lech, M. Pattern-recognition receptor signaling regulator mRNA expression in humans and mice, and in transient inflammation or progressive fibrosis. Int. J. Mol. Sci. 14, 18124–18147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gunthner, R. & Anders, H. J. Interferon-regulatory factors determine macrophage phenotype polarization. Mediators Inflamm. 2013, 731023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Serhan, C. N. et al. Novel functional sets of lipid-derived mediators with anti-inflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal anti-inflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kieran, N. E., Maderna, P. & Godson, C. Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney Int. 65, 1145–1154 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lech, M. & Anders, H. J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta 1832, 989–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Godwin, J. W., Pinto, A. R. & Rosenthal, N. A. Macrophages are required for adult salamander limb regeneration. Proc. Natl Acad. Sci. USA 110, 9415–9420 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schiffer, M. et al. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Invest. 108, 807–816 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, L. et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bottinger, E. P. & Bitzer, M. TGF-β signaling in renal disease. J. Am. Soc. Nephrol. 13, 2600–2610 (2002).

    Article  PubMed  Google Scholar 

  64. Dudakov, J. A. et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science 336, 91–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kulkarni, O. P. TLR4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013050528.

  68. Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burne, M. J. et al. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J. Clin. Invest. 108, 1283–1290 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, L. et al. NKT cell activation mediates neutrophil IFN-γ production and renal ischemia-reperfusion injury. J. Immunol. 178, 5899–5911 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Z. X. et al. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J. Immunol. 181, 7489–7498 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Jang, H. R. et al. B cells limit repair after ischemic acute kidney injury. J. Am. Soc. Nephrol. 21, 654–665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Linfert, D., Chowdhry, T. & Rabb, H. Lymphocytes and ischemia-reperfusion injury. Transplant. Rev. (Orlando) 23, 1–10 (2009).

    Article  Google Scholar 

  74. Kinsey, G. R., Sharma, R. & Okusa, M. D. Regulatory T cells in AKI. J. Am. Soc. Nephrol. 24, 1720–1726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gandolfo, M. T. et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 76, 717–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Kinsey, G. R. et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 20, 1744–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lugrin, J., Rosenblatt-Velin, N., Parapanov, R. & Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 395, 203–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Anders, H. J. & Muruve, D. A. The inflammasomes in kidney disease. J. Am. Soc. Nephrol. 22, 1007–1018 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Remuzzi, A. et al. ACE inhibition reduces glomerulosclerosis and regenerates glomerular tissue in a model of progressive renal disease. Kidney Int. 69, 1124–1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Fioretto, P., Steffes, M. W., Sutherland, D. E., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Pichaiwong, W. et al. Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J. Am. Soc. Nephrol. 24, 1088–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yuen, D. A., Gilbert, R. E. & Marsden, P. A. Bone marrow cell therapies for endothelial repair and their relevance to kidney disease. Semin. Nephrol. 32, 215–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Advani, A. & Gilbert, R. E. The endothelium in diabetic nephropathy. Semin. Nephrol. 32, 199–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Tongers, J. & Losordo, D. W. Frontiers in nephrology: the evolving therapeutic applications of endothelial progenitor cells. J. Am. Soc. Nephrol. 18, 2843–2852 (2007).

    Article  PubMed  Google Scholar 

  88. Boor, P. et al. PDGF-C mediates glomerular capillary repair. Am. J. Pathol. 177, 58–69 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ostendorf, T. et al. VEGF165 mediates glomerular endothelial repair. J. Clin. Invest. 104, 913–923 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Siddiqi, F. S. & Advani, A. Endothelial–podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62, 3647–3655 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kunter, U. et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J. Am. Soc. Nephrol. 17, 2202–2212 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Kramann, R. et al. Exposure to uremic serum induces a procalcific phenotype in human mesenchymal stem cells. Arterioscler. Thromb. Vasc. Biol. 31, e45–e54 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Ostendorf, T. et al. Inducible nitric oxide synthase-derived nitric oxide promotes glomerular angiogenesis via upregulation of vascular endothelial growth factor receptors. J. Am. Soc. Nephrol. 15, 2307–2319 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kitahara, M. et al. Selective cyclooxygenase-2 inhibition impairs glomerular capillary healing in experimental glomerulonephritis. J. Am. Soc. Nephrol. 13, 1261–1270 (2002).

    CAS  PubMed  Google Scholar 

  95. Flür, K. et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via melanoma-differentiation-associated gene-5: Implications for viral infection-associated glomerulonephritis. Am. J. Pathol. 175, 2014–2022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Imasawa, T. et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J. Am. Soc. Nephrol. 12, 1401–1409 (2001).

    CAS  PubMed  Google Scholar 

  97. Migliorini, A., Ebid, R., Scherbaum, C. R. & Anders, H. J. The danger control concept in kidney disease: mesangial cells. J. Nephrol. 26, 437–449 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Hugo, C., Shankland, S. J., Bowen-Pope, D. F., Couser, W. G. & Johnson, R. J. Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. J. Clin. Invest. 100, 786–794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Johnson, R. J. et al. Inhibition of mesangial cell proliferation and matrix expansion in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J. Exp. Med. 175, 1413–1416 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Ostendorf, T. et al. Specific antagonism of PDGF prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 12, 909–918 (2001).

    CAS  PubMed  Google Scholar 

  101. Eitner, F. et al. Role of interleukin-6 in mediating mesangial cell proliferation and matrix production in vivo. Kidney Int. 51, 69–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Saito, Y. et al. Mesangiolysis in diabetic glomeruli: its role in the formation of nodular lesions. Kidney Int. 34, 389–396 (1988).

    Article  CAS  PubMed  Google Scholar 

  103. Shankland, S. J. The podocyte's response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 69, 2131–2147 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kriz, W. & Lemley, K. V. The role of the podocyte in glomerulosclerosis. Curr. Opin. Nephrol. Hypertens. 8, 489–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Pippin, J. W. et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am. J. Pathol. 183, 542–557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wanner, N. et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013050452.

  109. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Grouls, S. et al. Lineage specification of parietal epithelial cells requires β-catenin/Wnt signaling. J. Am. Soc. Nephrol. 23, 63–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. 18, 3128–3138 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Migliorini, A. et al. The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am. J. Pathol. 183, 431–440 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Darisipudi, M. N. et al. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am. J. Pathol. 179, 116–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ryu, M. et al. Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury. J. Pathol. 228, 482–494 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Benigni, A. et al. Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring the glomerular architecture. Am. J. Pathol. 179, 628–638 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rizzo, P. et al. Nature and mediators of parietal epithelial cell activation in glomerulonephritides of human and rat. Am. J. Pathol. 183, 1769–1778 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Sicking, E. M. et al. Subtotal ablation of parietal epithelial cells induces crescent formation. J. Am. Soc. Nephrol. 23, 629–640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Smeets, B. et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1262–1274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Briggs, J. D., Kennedy, A. C., Young, L. N., Luke, R. G. & Gray, M. Renal function after acute tubular necrosis. Br. Med. J. 3, 513–516 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  PubMed  Google Scholar 

  122. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 329–340 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Maeshima, A., Yamashita, S. & Nojima, Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 14, 3138–3146 (2003).

    Article  PubMed  Google Scholar 

  125. Gupta, S. et al. Isolation and characterization of kidney-derived stem cells. J. Am. Soc. Nephrol. 17, 3028–3040 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sallustio, F. et al. TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J. 24, 514–525 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Langworthy, M. et al. NFATc1 identifies a population of proximal tubule cell progenitors. J. Am. Soc. Nephrol. 20, 311–321, (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kitamura, S. et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 19, 1789–1797 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Rabelink, T. J. & Little, M. H. Stromal cells in tissue homeostasis: balancing regeneration and fibrosis. Nat. Rev. Nephrol. 9, 747–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Grgic, I. et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 82, 172–183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, L. et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int. 74, 1526–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lech, M. et al. Endogenous and exogenous pentraxin-3 limits postischemic acute and chronic kidney injury. Kidney Int. 83, 647–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Chen, J., Matzuk, M. M., Zhou, X. J. & Lu, C. Y. Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury. Kidney Int. 82, 1195–1207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lee, S. et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22, 317–326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, M. Z. et al. CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Invest. 122, 4519–4532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ko, G. J., Boo, C. S., Jo, S. K., Cho, W. Y. & Kim, H. K. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol. Dial. Transplant. 23, 842–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Lech, M. et al. Resident dendritic cells prevent postischemic acute renal failure by help of single Ig IL-1 receptor-related protein. J. Immunol. 183, 4109–4118 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Lassen, S. et al. Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J. Immunol. 185, 1976–1983 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Romagnani, P. & Anders, H. J. What can tubular progenitor cultures teach us about kidney regeneration? Kidney Int. 83, 351–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Sallustio, F. et al. Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. 83, 392–403 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Chen, J., Chen, J. K., Conway, E. M. & Harris, R. C. Survivin mediates renal proximal tubule recovery from AKI. J. Am. Soc. Nephrol. 24, 2023–2033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ren, S. et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc. Natl Acad. Sci. USA 110, 1440–1445 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kaissling, B. et al. Renal epithelial injury and fibrosis. Biochim. Biophys. Acta 1832, 931–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Schrimpf, C. et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J. Am. Soc. Nephrol. 23, 868–883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kida, Y., Ieronimakis, N., Schrimpf, C., Reyes, M. & Duffield, J. S. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J. Am. Soc. Nephrol. 24, 559–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Basile, D. P. Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr. Opin. Nephrol. Hypertens. 13, 1–7 (2004).

    Article  PubMed  Google Scholar 

  148. Zager, R. A., Johnson, A. C., Andress, D. & Becker K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int. 84, 703–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bohle, A. et al. The long-term prognosis of the primary glomerulonephritides. A morphological and clinical analysis of 1747 cases. Pathol. Res. Pract. 188, 908–924 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Ramachandran, P. & Iredale, J. P. Reversibility of liver fibrosis. Ann. Hepatol. 8, 283–291 (2009).

    Article  PubMed  Google Scholar 

  151. Eddy, A. A. Can renal fibrosis be reversed? Pediatr. Nephrol. 20, 1369–1375 (2005).

    Article  PubMed  Google Scholar 

  152. Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell Physiol. 227, 493–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chevalier, R. L., Kim, A., Thornhill, B. A. & Wolstenholme, J. T. Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int. 55, 793–807 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Ninichuk, V. et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int. 70, 121–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Lasagni, L. & Romagnani, P. Glomerular epithelial stem cells: the good, the bad, and the ugly. J. Am. Soc. Nephrol. 21, 1612–1619 (2010).

    Article  PubMed  Google Scholar 

  157. Chevalier, R. L. & Forbes, M. S. Generation and evolution of atubular glomeruli in the progression of renal disorders. J. Am. Soc. Nephrol. 19, 197–206 (2008).

    Article  PubMed  Google Scholar 

  158. Kulkarni, O. et al. Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J. Pharmacol. Exp. Ther. 328, 371–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Benigni, A. et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Nephrol. 14, 1816–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J. Am. Soc. Nephrol. 19, 1213–1224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ikebuchi, K. et al. Synergistic factors for stem cell proliferation: further studies of the target stem cells and the mechanism of stimulation by interleukin-1, interleukin-6, and granulocyte colony-stimulating factor. Blood 72, 2007–2014 (1988).

    CAS  PubMed  Google Scholar 

  162. Lebedev, V. G., Moroz, B. B., Deshevoii, I., Lyrshchikova, A. V. & Rozhdestvenskii, L. M. Study of mechanisms of anti-irradiation effects of interleukin-1β in long-term bone marrow cultures [Russian]. Radiats. Biol. Radioecol. 42, 60–64 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work is supported by grants from the Deutsche Forschungsgemeinschaft (AN372/9-2, AN371/12-2 and AN372/15-1) and the Else Kröner-Fresenius Stiftung (2011_A95). The author thanks Jyaysi Desai and Simone Romoli for their help in preparing figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Anders.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Definitions of terms related to inflammation and regeneration. (DOC 46 kb)

Supplementary Table 2

Effect of inflammatory mediators on proliferation of progenitor cells. (DOC 89 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anders, HJ. Immune system modulation of kidney regeneration—mechanisms and implications. Nat Rev Nephrol 10, 347–358 (2014). https://doi.org/10.1038/nrneph.2014.68

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.68

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing