Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in IgA nephropathy

Key Points

  • MicroRNAs (miRNAs) might have important roles in the pathogenesis and progression of IgA nephropathy

  • Abnormal expression of miR-148b in peripheral blood mononuclear cells might account for the aberrant glycosylation of IgA1 observed in patients with IgA nephropathy

  • miR-29c attenuates renal interstitial fibrosis and is probably important in the progression of IgA nephropathy

  • Urinary miRNA levels could potentially serve as biomarkers for diagnosing and monitoring IgA nephropathy

  • The potential application of urinary miRNAs in monitoring patients with IgA nephropathy is still in the early stages of development, with available published evidence limited to small-scale studies

Abstract

IgA nephropathy is globally the most common primary glomerulonephritis, but the pathogenesis of this condition is still only partially understood. MicroRNAs (miRNAs) are short, noncoding RNA molecules that regulate gene expression. Genome-wide analysis of renal miRNA expression has identified a number of novel miRNAs related to immunological and pathological changes. Specifically, overexpression of miR-148b might explain the aberrant glycosylation of IgA1, which has a central pathogenetic role in the early phase of IgA nephropathy. By contrast, miR-29c is an antifibrotic miRNA that is probably important in the late stages of disease progression. In addition, urinary levels of several miRNAs are significantly changed in patients with IgA nephropathy compared with healthy individuals; some alterations seem to be disease-specific, whereas others are apparently damage-related. As miRNAs in urinary sediment are relatively stable and easily quantified, they have the potential to be used as biomarkers for the diagnosis and monitoring of disease. However, to date, limited data are available on the role of miRNAs in the pathogenesis of IgA nephropathy and their potential application as biomarkers. Consequently, further studies are urgently needed to address this shortfall. Here, we review the available literature on miRNAs in relation to IgA nephropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific microRNAs, their putative targets and pathophysiological effects in IgA nephropathy.

Similar content being viewed by others

References

  1. Wyatt, R. J. & Julian, B. A. IgA nephropathy. N. Engl. J. Med. 368, 2402–2414 (2013).

    Article  CAS  Google Scholar 

  2. Li, P. K., Ho, K. K., Szeto, C. C., Yu, L. & Lai, F. M. Prognostic indicators of IgA nephropathy in the Chinese—clinical and pathological perspectives. Nephrol. Dial. Transplant. 17, 64–69 (2002).

    Article  CAS  Google Scholar 

  3. Le, W. et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol. Dial. Transplant. 27, 1479–1485 (2012).

    Article  CAS  Google Scholar 

  4. Zuo, L. & Wang, M. Current burden and probable increasing incidence of ESRD in China. Clin. Nephrol. 74 (Suppl. 1), S20–S22 (2010).

    PubMed  Google Scholar 

  5. Schena, F. P. & Coppo, R. in Oxford Textbook of Clinical Nephrology 3rd edn (eds Davison, A. M. et al.) 469–501 (Oxford University Press, 2005).

    Google Scholar 

  6. Ho, Y.-W. et al. Hong Kong Renal Registry Report 2010. Hong Kong J. Nephrol. 12, 81–98 (2010).

    Article  Google Scholar 

  7. Knoop, T. et al. Mortality in patients with IgA nephropathy. Am. J. Kidney Dis. 62, 883–890 (2013).

    Article  Google Scholar 

  8. Novak, J., Renfrow, M. B., Gharavi, A. G. & Julian, B. A. Pathogenesis of immunoglobulin A nephropathy. Curr. Opin. Nephrol. Hypertens. 22, 287–294 (2013).

    Article  CAS  Google Scholar 

  9. Roos, A. & van Kooten, C. Underglycosylation of IgA in IgA nephropathy: more than a diagnostic marker? Kidney Int. 71, 1089–1091 (2007).

    Article  CAS  Google Scholar 

  10. Boyd, J. K., Cheung, C. K., Molyneux, K., Feehally, J. & Barratt, J. An update on the pathogenesis and treatment of IgA nephropathy. Kidney Int. 81, 833–843 (2012).

    Article  CAS  Google Scholar 

  11. Moldoveanu, Z. et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int. 71, 1148–1154 (2007).

    Article  CAS  Google Scholar 

  12. Smith, A. C., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3520–3528 (2006).

    Article  CAS  Google Scholar 

  13. Li, G. S., Zhang, H., Lv, J. C., Shen, Y. & Wang, H. Y. Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int. 71, 448–453 (2007).

    Article  CAS  Google Scholar 

  14. Serino, G., Sallustio, F., Cox, S. N., Pesce, F. & Schena, F. P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 23, 814–824 (2012).

    Article  CAS  Google Scholar 

  15. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  16. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  17. Morita, K. & Han, M. Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans. EMBO J. 25, 5794–5804 (2006).

    Article  CAS  Google Scholar 

  18. Chan, S. P., Ramaswamy, G., Choi, E. Y. & Slack, F. J. Identification of specific let-7 microRNA binding complexes in Caenorhabditis elegans. RNA 14, 2104–2114 (2008).

    Article  CAS  Google Scholar 

  19. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  Google Scholar 

  20. Bartels, C. L. & Tsongalis, G. J. MicroRNAs, novel biomarkers for human cancer. Clin. Chem. 55, 623–631 (2009).

    Article  CAS  Google Scholar 

  21. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system, basic principles. Cell 136, 26–36 (2009).

    Article  CAS  Google Scholar 

  22. Tian, Z., Greene, A. S., Pietrusz, J. L., Matus, I. R. & Liang, M. MicroRNA–target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 18, 404–411 (2008).

    Article  CAS  Google Scholar 

  23. Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188 (2004).

    Article  Google Scholar 

  24. Gregory, P. A., Bracken, C. P., Bert, A. G. & Goodall, G. J. MicroRNAs as regulators of epithelial–mesenchymal transition. Cell Cycle 7, 3112–3118 (2008).

    Article  CAS  Google Scholar 

  25. Neilson, E. G. Mechanisms of disease: fibroblasts—a new look at an old problem. Nat. Clin. Pract. Nephrol. 2, 101–108 (2006).

    Article  CAS  Google Scholar 

  26. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  Google Scholar 

  27. Park, S.-M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  Google Scholar 

  28. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  Google Scholar 

  29. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    Article  CAS  Google Scholar 

  30. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  Google Scholar 

  31. Lorenzen, J. M., Haller, H. & Thum, T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat. Rev. Nephrol. 7, 286–294 (2011).

    Article  CAS  Google Scholar 

  32. Chandrasekaran, K. et al. Role of microRNAs in kidney homeostasis and disease. Kidney Int. 81, 617–627 (2012).

    Article  CAS  Google Scholar 

  33. Tan, K. et al. Genome-wide analysis of microRNAs expression profiling in patients with primary IgA nephropathy. Genome 56, 161–169 (2013).

    Article  CAS  Google Scholar 

  34. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    Article  CAS  Google Scholar 

  35. Cloonan, N. et al. The miR-17-5p microRNA is a key regulator of the G1/S. phase cell cycle transition. Genome Biol. 9, R127 (2008).

    Article  Google Scholar 

  36. Serva, A. et al. miR-17-5p regulates endocytic trafficking through targeting TBC1D2/Armus. PLoS ONE 7, e52555 (2012).

    Article  CAS  Google Scholar 

  37. Dong, Y. et al. Tumor suppressor functions of miR-133a in colorectal cancer. Mol. Cancer Res. 11, 1051–1060 (2013).

    Article  CAS  Google Scholar 

  38. Liu, W. et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 9, e1003626 (2013).

    Article  CAS  Google Scholar 

  39. Wang, J. et al. Repression of ATR pathway by miR-185 enhances radiation-induced apoptosis and proliferation inhibition. Cell Death Dis. 4, e699 (2013).

    Article  CAS  Google Scholar 

  40. Silva, F. G., Chander, P., Pirani, C. L. & Hardy, M. A. Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. Transplantation 33, 241–246 (1982).

    CAS  PubMed  Google Scholar 

  41. Chen, Y, Song, Y. X. & Wang, Z. N. The microRNA-148/152 family, multi-faceted players. Mol. Cancer 12, 43 (2013).

    Article  Google Scholar 

  42. Liu, X. et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. J. Immunol. 185, 7244–7251 (2010).

    Article  CAS  Google Scholar 

  43. Cimino, D. et al. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J. 27, 1223–1235 (2013).

    Article  CAS  Google Scholar 

  44. Roth, C. et al. Low levels of cell-free circulating miR-361-3p and miR-625* as blood-based markers for discriminating malignant from benign lung tumors. PLoS ONE 7, e38248 (2012).

    Article  CAS  Google Scholar 

  45. Cao, J. et al. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res. 73, 3326–3335 (2013).

    Article  CAS  Google Scholar 

  46. Floege, J. The pathogenesis of IgA nephropathy, what is new and how does it change therapeutic approaches? Am. J. Kidney Dis. 58, 992–1004 (2011).

    Article  CAS  Google Scholar 

  47. Loeffler, I. & Wolf, G. Transforming growth factor-β and the progression of renal disease. Nephrol. Dial. Transplant. 29 (Suppl. 1), i37–i45 (2014).

    Article  CAS  Google Scholar 

  48. Liu, Y. et al. Renal medullary microRNAs in Dahl salt-sensitive rats, miR-29b regulates several collagens and related genes. Hypertension 55, 974–982 (2010).

    Article  CAS  Google Scholar 

  49. Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22, 1462–1474 (2011).

    Article  CAS  Google Scholar 

  50. Fang, Y. et al. miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-α activation. Am. J. Physiol. Renal Physiol. 304, F1274–F1282 (2013).

    Article  CAS  Google Scholar 

  51. Wang, G. et al. Intra-renal expression of microRNAs in patients with IgA nephropathy. Lab. Invest. 90, 98–103 (2010).

    Article  CAS  Google Scholar 

  52. Wang, G. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 30, 171–179 (2011).

    Article  Google Scholar 

  53. Puhr, M. et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol. 181, 2188–2201 (2012).

    Article  CAS  Google Scholar 

  54. Muratsu-Ikeda, S. et al. Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS ONE 7, e41462 (2012).

    Article  CAS  Google Scholar 

  55. Yang, L. et al. miR-146a controls the resolution of T cell responses in mice. J. Exp. Med. 209, 1655–1670 (2012).

    Article  CAS  Google Scholar 

  56. Ichii, O. et al. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 81, 280–292 (2012).

    Article  CAS  Google Scholar 

  57. Vigorito, E., Kohlhaas, S., Lu, D. & Leyland, R. miR-155, an ancient regulator of the immune system. Immunol. Rev. 253, 146–157 (2013).

    Article  Google Scholar 

  58. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra128 (2012).

    Article  Google Scholar 

  59. Chung, A. C., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325 (2010).

    Article  CAS  Google Scholar 

  60. Krupa, A., Jenkins, R., Luo, D. D., Lewis, A., Phillips, A. & Fraser, D. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438–447 (2010).

    Article  CAS  Google Scholar 

  61. Du, B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 584, 811–816 (2010).

    Article  CAS  Google Scholar 

  62. Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 22, 4126–4135 (2008).

    Article  CAS  Google Scholar 

  63. Fleissner, F. et al. Short communication, asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ. Res. 107, 138–143 (2010).

    Article  CAS  Google Scholar 

  64. Hanke, M. et al. A robust methodology to study urine microRNA as tumor marker, microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28, 655–661 (2010).

    Article  CAS  Google Scholar 

  65. Cortez, M. A. & Calin, G. A. MicroRNA identification in plasma and serum, a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 9, 703–711 (2009).

    Article  CAS  Google Scholar 

  66. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  Google Scholar 

  67. Gilad, S. et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 3, e3148 (2008).

    Article  Google Scholar 

  68. Lorenzen, J. M. et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am. J. Transplant. 11, 2221–2227 (2011).

    Article  CAS  Google Scholar 

  69. Wang, G. et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus 20, 493–500 (2011).

    Article  CAS  Google Scholar 

  70. Wang, G. & Szeto, C. C. Methods of microRNA quantification in urinary sediment. Methods Mol. Biol. 1024, 211–220 (2013).

    Article  CAS  Google Scholar 

  71. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    Article  CAS  Google Scholar 

  72. Wang, G. et al. Serum and urinary cell free miR-146a and miR-155 in patients with systemic lupus erythematosus. J. Rheumatol. 37, 2516–2522 (2010).

    Article  CAS  Google Scholar 

  73. Wang, G. et al. Urinary miR-21, miR-29, and miR-93, novel biomarkers of fibrosis. Am. J. Nephrol. 36, 412–418 (2012).

    Article  CAS  Google Scholar 

  74. Szeto, C. C. et al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers 33, 137–144 (2012).

    Article  CAS  Google Scholar 

  75. Wang, G. et al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis. Markers 28, 79–86 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

C.-C.S. is supported in part by the Chinese University of Hong Kong research account 6901031.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the article, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Philip K.-T. Li.

Ethics declarations

Competing interests

P.K.-T.L. has received speaker honoraria from Astellas and sits on the Trial Advisory Committee of Baxter Healthcare. C.-C.S. has received research grants from Baxter Healthcare.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeto, CC., Li, PT. MicroRNAs in IgA nephropathy. Nat Rev Nephrol 10, 249–256 (2014). https://doi.org/10.1038/nrneph.2014.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing