Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Orthostatic hypertension—a new haemodynamic cardiovascular risk factor

Abstract

Orthostatic hypertension—a condition characterized by a hyperactive pressor response to orthostatic stress—is an emerging risk factor for cardiovascular disease and is associated with hypertensive target-organ damage (resulting in silent cerebrovascular disease, left ventricular hypertrophy, carotid atherosclerosis and/or chronic kidney disease) and cardiovascular events (such as coronary artery disease and lacunar stroke). The condition is also considered to be a form of prehypertension as it precedes hypertension in young, normotensive adults. Orthostatic blood pressure changes can be assessed using orthostatic stress tests, including clinic active standing tests, home blood pressure monitoring and the head-up tilting test. Devices for home and for ambulatory blood pressure monitoring that are equipped with position sensors and do not induce a white-coat effect have increased the sensitivity and specificity of diagnosis of out-of-clinic orthostatic hypertension. Potential major mechanisms of orthostatic hypertension are sympathetic hyperactivity (as a result of hypersensitivity of the cardiopulmonary and arterial baroreceptor reflex) and α-adrenergic hyperactivation. Orthostatic hypertension is also associated with morning blood pressure surge and extreme nocturnal blood pressure dipping, both of which increase the pulsatile haemodynamic stress of central arterial pressure and blood flow in patients with systemic haemodynamic atherothrombotic syndrome.

Key Points

  • Orthostatic hypertension is characterized by a hyper-reactive pressor response to orthostatic stress and is an emerging risk factor for organ damage and cardiovascular disease

  • The condition increases the pulsatile haemodynamic stress of central arterial pressure and blood flow, resulting in progression of systemic haemodynamic atherothrombotic syndrome

  • Orthostatic hypertension precedes hypertension and is considered to be a form of prehypertension and a biomarker of masked hypertension in patients with normal sitting blood pressure levels

  • Sympathetic hyperactivity (resulting from hypersensitivity of the cardiopulmonary and arterial baroreceptor reflex) and α-adrenergic hyper-reactive vascular disease are potential major mechanisms of orthostatic hypertension

  • Further studies are needed to demonstrate whether orthostatic hypertension is only a marker or one of the leading causes of target-organ damage and cardiovascular events

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orthostatic blood pressure changes evaluated using the head-up tilting test in elderly patients with hypertension.
Figure 2: Diagnosis and management of orthostatic hypertension.
Figure 3: Orthostatic hypertension and related diseases.
Figure 4: Orthostatic hypertension and related blood pressure variability.
Figure 5: Systemic haemodynamic atherothrombotic syndrome—risk factors and clinical manifestations.
Figure 6: The vicious cycle between pulsatile haemodynamic stress and vascular disease in SHATS.
Figure 7: Potential cardiovascular reactive mechanism of orthostatic sympathetic hyperactivity syndrome.

Similar content being viewed by others

References

  1. Ogihara, T. et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2009). Hypertens. Res. 32, 3–107 (2009).

    CAS  PubMed  Google Scholar 

  2. Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 34, 2159–2219 (2013).

    Article  PubMed  Google Scholar 

  3. Kario, K. & Pickering, T. G. Blood pressure variability in elderly patients. Lancet 355, 1645–1646 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Parati, G., Ochoa, J. E., Lombardi, C. & Bilo, G. Assessment and management of blood-pressure variability. Nat. Rev. Cardiol. 10, 143–155 (2013).

    Article  PubMed  Google Scholar 

  5. Kario, K. Preceding linkage between a morning surge in blood pressure and small artery remodeling: an indicator of prehypertension? J. Hypertens. 25, 1573–1575 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Fedorowski, A. et al. Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmo Preventive Project). Eur. Heart J. 31, 85–91 (2010).

    Article  PubMed  Google Scholar 

  7. Task Force for the Diagnosis and Management of Syncope et al. Guidelines for the diagnosis and management of syncope (version 2009). Eur. Heart J. 30, 2631–2671 (2009).

  8. Freeman, R. et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 21, 69–72 (2011).

    Article  PubMed  Google Scholar 

  9. Fessel, J. & Robertson, D. Orthostatic hypertension: when pressor reflexes overcompensate. Nat. Clin. Pract. Nephrol. 2, 424–431 (2006).

    Article  PubMed  Google Scholar 

  10. Kario, K. Orthostatic hypertension: a measure of blood pressure variation for predicting cardiovascular risk. Circ. J. 73, 1002–1007 (2009).

    Article  PubMed  Google Scholar 

  11. Buddineni, J. P., Chauhan, L., Ahsan, S. T. & Whaley-Connell, A. An emerging role for understanding orthostatic hypertension in the cardiorenal syndrome. Cardiorenal Med. 1, 113–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Robertson, D. Orthostatic hypertension: the last hemodynamic frontier. Hypertension 57, 158–159 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Streeten, D. H. et al. Orthostatic hypertension. Pathogenetic studies. Hypertension 7, 196–203 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Olga, V., Lucio, M., Giuseppe, G., Stefano, M. & Paolo, P. Blood pressure response to stress tests does not reflect blood pressure variability and degree of cardiovascular involvement in young hypertensives. Int. J. Cardiol. 48, 303–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Matsubayashi, K. et al. Postural dysregulation in systolic blood pressure is associated with worsened scoring on neurobehavioral function tests and leukoaraiosis in the older elderly living in a community. Stroke 28, 2169–2173 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Vriz, O. et al. Does orthostatic testing have any role in the evaluation of the young subject with mild hypertension?: an insight from the HARVEST study. Am. J. Hypertens. 10, 546–551 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Kario, K., Eguchi, K., Nakagawa, Y., Motai, K. & Shimada, K. Relationship between extreme dippers and orthostatic hypertension in elderly hypertensive patients. Hypertension 31, 77–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Nardo, C. J. et al. Descriptive epidemiology of blood pressure response to change in body position. The ARIC study. Hypertension 33, 1123–1129 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kohara, K., Tabara, Y., Yamamoto, Y. & Miki, T. Orthostatic hypertension: another orthostatic disorder to be aware of. J. Am. Geriatr. Soc. 48, 1538–1539 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Yoshinari, M. et al. Orthostatic hypertension in patients with type 2 diabetes. Diabetes Care 24, 1783–1786 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Eguchi, K. et al. Greater change of orthostatic blood pressure is related to silent cerebral infarct and cardiac overload in hypertensive subjects. Hypertens. Res. 27, 235–241 (2004).

    Article  PubMed  Google Scholar 

  22. Hoshide, S. et al. Altered aortic properties in elderly orthostatic hypertension. Hypertens. Res. 28, 15–19 (2005).

    Article  PubMed  Google Scholar 

  23. Hoshide, S. et al. Orthostatic hypertension detected by self-measured home blood pressure monitoring: a new cardiovascular risk factor for elderly hypertensives. Hypertens. Res. 31, 1509–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, J. S., Yang, Y. C., Lu, F. H., Wu, C. H. & Chang, C. J. Population-based study on the prevalence and correlates of orthostatic hypotension/hypertension and orthostatic dizziness. Hypertens. Res. 31, 897–904 (2008).

    Article  PubMed  Google Scholar 

  25. Hirai, F. E., Moss, S. E., Klein, B. E. & Klein, R. Postural blood pressure changes and associated factors in long-term type 1 diabetes: Wisconsin Epidemiologic Study of Diabetic Retinopathy. J. Diabetes Complications 23, 83–88 (2009).

    Article  PubMed  Google Scholar 

  26. Fan, X. H. et al. Disorders of orthostatic blood pressure response are associated with cardiovascular disease and target organ damage in hypertensive patients. Am. J. Hypertens. 23, 829–837 (2010).

    Article  PubMed  Google Scholar 

  27. Fedorowski, A. et al. Orthostatic blood pressure response, carotid intima-media thickness, and plasma fibrinogen in older nondiabetic adults. J. Hypertens. 30, 522–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Barochiner, J. et al. Predictors of masked hypertension among treated hypertensive patients: an interesting association with orthostatic hypertension. Am. J. Hypertens. 26, 872–878 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Kario, K. et al. U-curve relationship between orthostatic blood pressure change and silent cerebrovascular disease in elderly hypertensives: orthostatic hypertension as a new cardiovascular risk factor. J. Am. Coll. Cardiol. 40, 133–141 (2002).

    Article  PubMed  Google Scholar 

  30. Thomas, R. J. et al. Positional change in blood pressure and 8-year risk of hypertension: the CARDIA Study. Mayo Clin. Proc. 78, 951–958 (2003).

    Article  PubMed  Google Scholar 

  31. Yatsuya, H. et al. Postural changes in blood pressure and incidence of ischemic stroke subtypes: the ARIC study. Hypertension 57, 167–173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoshide, S. et al. Orthostatic hypertension: home blood pressure monitoring for detection and assessment of treatment with doxazosin. Hypertens. Res. 35, 100–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kario, K. et al. Silent and clinically overt stroke in older Japanese subjects with white-coat and sustained hypertension. J. Am. Coll. Cardiol. 38, 238–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Pickering, T. G. et al. Call to action on use and reimbursement for home blood pressure monitoring: a joint scientific statement from the American Heart Association, American Society of Hypertension, and Preventive Cardiovascular Nurses Association. Hypertension 52, 10–29 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parati, G. et al. European Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J. Hypertens. 26, 1505–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Imai, Y. et al. The Japanese Society of Hypertension guidelines for self-monitoring of blood pressure at home (second edition). Hypertens. Res. 35, 777–795 (2012).

    Article  PubMed  Google Scholar 

  37. Kario, K. et al. An α-adrenergic blocker titrated by self-measured blood pressure recordings lowered blood pressure and microalbuminuria in patients with morning hypertension: the Japan Morning Surge-1 Study. J. Hypertens. 26, 1257–1265 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tochikubo, O., Ikeda, A., Miyajima, E. & Ishii, M. Effects of insufficient sleep on blood pressure monitored by a new multibiomedical recorder. Hypertension 27, 1318–1324 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Hui, X. et al. CKD and cardiovascular disease in the Atherosclerosis Risk in Communities (ARIC) Study: interactions with age, sex, and race. Am. J. Kidney Dis. 62, 691–702 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Carter, C. E. et al. Influence of urine creatinine concentrations on the relation of albumin:creatinine ratio with cardiovascular disease events: the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Kidney Dis. 62, 722–729 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kario, K. in Special Issues in Hypertension (eds Berbari, A. E. & Mancia, G.) 71–89 (Springer Inc., 2012).

    Book  Google Scholar 

  42. Folkow, B. Physiological aspects of primary hypertension. Physiol. Rev. 62, 347–504 (1982).

    Article  CAS  PubMed  Google Scholar 

  43. Schiffrin, E. L. Vascular stiffening and arterial compliance. Implications for systolic blood pressure. Am. J. Hypertens. 17, 39S–48S (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Rizzoni, D. et al. Morning rise of blood pressure and subcutaneous small resistance artery structure. J. Hypertens. 25, 1698–1703 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Nilsson, P. M. et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J. Hypertens. 35, 1517–1526 (2013).

    Article  CAS  Google Scholar 

  46. Kario, K. Is vascular morning blood pressure surge in the elderly resistant to antihypertensives and more risky? Hypertension 60, e16 (2012).

    CAS  PubMed  Google Scholar 

  47. Kario, K. Morning surge in blood pressure and cardiovascular risk: evidence and perspectives. Hypertension 56, 765–773 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Kario, K. et al. Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients. Advanced silent cerebrovascular damage in extreme dippers. Hypertension 27, 130–135 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Kario, K. et al. Stroke prognosis and abnormal nocturnal blood pressure falls in older hypertensives. Hypertension 38, 852–857 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kario, K. et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation 107, 1401–1406 (2003).

    Article  PubMed  Google Scholar 

  51. Pickering, T. G., Eguchi, K. & Kario, K. Masked hypertension: a review. Hypertens. Res. 30, 479–488 (2007).

    Article  PubMed  Google Scholar 

  52. Kario, K. Proposal of a new strategy for ambulatory blood pressure profile-based management of resistant hypertension in the era of renal denervation. Hypertens. Res. 36, 478–484 (2013).

    Article  PubMed  Google Scholar 

  53. Mortensen, K. et al. Catheter-based renal sympathetic denervation improves central hemodynamics and arterial stiffness: a pilot study. J. Clin. Hypertens. (Greenwich) 14, 861–870 (2012).

    Article  Google Scholar 

  54. Brandt, M. C. et al. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J. Am. Coll. Cardiol. 60, 1956–1965 (2012).

    Article  PubMed  Google Scholar 

  55. Hart, E. C. et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension 62, 533–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Dauphinot, V. et al. Impaired baroreflex sensitivity and the risks of new-onset ambulatory hypertension, in an elderly population-based study. Int. J. Cardiol. 168, 4010–4014 (2013).

    Article  PubMed  Google Scholar 

  57. Okada, Y. et al. Morning blood pressure surge is associated with arterial stiffness and sympathetic baroreflex sensitivity in hypertensive seniors. Am. J. Physiol. Heart Circ. Physiol. 305, H793–H802 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanchez Gelós, D. F., Otero-Losada, M. E., Azzato, F. & Milei, J. Morning surge, pulse wave velocity, and autonomic function tests in elderly adults. Blood Press. Monit. 17, 103–109 (2012).

    Article  PubMed  Google Scholar 

  59. Ragot, S., Herpin, D., Siché, J. P., Poncelet, P. & Mallion, J. M. Relationship between short-term and long-term blood pressure variabilities in essential hypertensives. J. Hum. Hypertens. 15, 41–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Williams, B. Evaluating interventions to reduce central aortic pressure, arterial stiffness and morbidity--mortality. J. Hypertens. 30 (Suppl.), S13–S18 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Palatini, P. et al. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension. Vasc. Health Risk Manag. 7, 725–739 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kotsis, V., Stabouli, S., Karafillis, I. & Nilsson, P. Early vascular aging and the role of central blood pressure. J. Hypertens. 29, 1847–1853 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Nilsson, P. M. et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. J. Hypertens. 31, 1517–1526 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Safar, M. E. Arterial aging--hemodynamic changes and therapeutic options. Nat. Rev. Cardiol. 7, 442–449 (2010).

    Article  PubMed  Google Scholar 

  65. Makowski, K. et al. Left ventricular diastolic dysfunction is associated with impaired baroreflex at rest and during orthostatic stress in hypertensive patients with left ventricular hypertrophy. J. Hum. Hypertens. 27, 465–473 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Milan, A. et al. Baroreflex sensitivity correlates with left ventricular morphology and diastolic function in essential hypertension. J. Hypertens. 25, 1655–1664 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Brisset, M. et al. Large-vessel correlates of cerebral small-vessel disease. Neurology 80, 662–669 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Briet, M., Pierre, B., Laurent, S. & London, G. M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 82, 388–400 (2012).

    Article  PubMed  Google Scholar 

  69. Muiesan, M. L. et al. Pulsatile hemodynamics and microcirculation: evidence for a close relationship in hypertensive patients. Hypertension 61, 130–136 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Caplan, L. R. Intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology 39, 1246–1250 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Tatsumi, S. & Yamamoto, T. An autopsied case of an apparent pontine branch atheromatous disease. Eur. Neurol. 63, 184–185 (2010).

    Article  PubMed  Google Scholar 

  72. Izzo, J. L. & Shykoff, B. E. Arterial stiffness: clinical relevance, measurement, and treatment. Rev. Cardiovasc. Med. 2, 29–34, 37–40 (2001).

    PubMed  Google Scholar 

  73. Masoud, M., Sarig, G., Brenner, B. & Jacob, G. Orthostatic hypercoagulability: a novel physiological mechanism to activate the coagulation system. Hypertension 51, 1545–1551 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hagan, R. D., Diaz, F. J. & Horvath, S. M. Plasma volume changes with movement to supine and standing positions. J. Appl. Physiol. 45, 414–417 (1978).

    Article  CAS  PubMed  Google Scholar 

  75. Lin, M. C. et al. Shear stress induction of the tissue factor gene. J. Clin. Invest. 99, 737–744 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Andrews, N. P., Goldstein, D. S. & Quyyumi, A. A. Effect of systemic α-2 adrenergic blockade on the morning increase in platelet aggregation in normal subjects. Am. J. Cardiol. 84, 316–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Ikeda, Y. et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J. Clin. Invest. 87, 1234–1240 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gkaliagkousi, E., Passacquale, G., Douma, S., Zamboulis, C. & Ferro, A. Platelet activation in essential hypertension: implications for antiplatelet treatment. Am. J. Hypertens. 23, 229–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Kario, K. et al. Morning blood pressure surge, morning platelet aggregation, and silent cerebral infarction in older Japanese hypertensive patients. J. Hypertens. 29, 2433–2439 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Kario, K. et al. Additional impact of morning haemostatic risk factors and morning blood pressure surge on stroke risk in older Japanese hypertensive patients. Eur. Heart J. 32, 574–580 (2011).

    Article  PubMed  Google Scholar 

  81. Smith, J. J., Porth, C. M. & Erickson, M. Hemodynamic response to the upright posture. J. Clin. Pharmacol. 34, 375–386 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Persson, P. B. Modulation of cardiovascular control mechanisms and their interaction. Physiol. Rev. 76, 193–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Gordon, R. D., Kuchel, O., Liddle, G. W. & Island, D. P. Role of the sympathetic nervous system in regulating renin and aldosterone production in man. J. Clin. Invest. 46, 599–605 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kario, K., Schwartz, J. E. & Pickering, T. G. Changes of nocturnal blood pressure dipping status in hypertensives by nighttime dosing of α-adrenergic blocker, doxazosin: results from the HALT study. Hypertension 35, 787–794 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Kario, K. et al. Morning blood pressure surge and hypertensive cerebrovascular disease: role of the α-adrenergic sympathetic nervous system. Am. J. Hypertens. 17, 668–675 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Kario, K. Blood pressure variability in hypertension: a possible cardiovascular risk factor. Am. J. Hypertens. 17, 1075–1076 (2004).

    PubMed  Google Scholar 

  87. Fujimoto, S., Mizuno, R., Saito, Y. & Nakamura, S. Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels 19, 19–22 (2004).

    Article  PubMed  Google Scholar 

  88. Benarroch, E. E. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin. Proc. 87, 1214–1225 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kario, K., Mitsuhashi, T. & Shimada, K. Neurohumoral characteristics of older hypertensive patients with abnormal nocturnal blood pressure dipping. Am. J. Hypertens. 15, 531–537 (2002).

    Article  PubMed  Google Scholar 

  90. Kario, K. et al. Development of a disaster cardiovascular prevention network. Lancet 378, 1125–1127 (2011).

    Article  PubMed  Google Scholar 

  91. Ketch, T., Biaggioni, I., Robertson, R. & Robertson, D. Four faces of baroreflex failure: hypertensive crisis, volatile hypertension, orthostatic tachycardia, and malignant vagotonia. Circulation 105, 2518–2523 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This author's work was supported by the Foundation for Development of the Community, Tochigi, Japan, by a Grant-in-Aid for Scientific Research (B 21390247) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and by a MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2011-2015 “Cooperative Basic and Clinical Research on Circadian Medicine” (S1101022).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kario, K. Orthostatic hypertension—a new haemodynamic cardiovascular risk factor. Nat Rev Nephrol 9, 726–738 (2013). https://doi.org/10.1038/nrneph.2013.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing