Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anaemia management and mortality risk in chronic kidney disease

Abstract

Renal anaemia is a frequent complication in patients with chronic kidney disease (CKD). Severe anaemia (haemoglobin <90 g/l) is associated with increased risks of mortality and cardiac complications, such as left ventricular hypertrophy and cardiovascular disease, and impaired quality of life. Randomized controlled trials have tested the hypothesis that increasing haemoglobin level using erythropoiesis-stimulating agents (ESAs) lowers these risks and improves quality of life. Use of ESAs to normalize haemoglobin levels (to ≥130 g/l) versus the partial correction of anaemia (to haemoglobin levels of 90–110 g/l) has repeatedly been shown to have no cardiac benefit and to be associated with no incremental improvement in outcomes and quality of life (except fatigue), but has been shown to be associated with an increased risk of cardiovascular events and death. Use of more-intense iron dosing has been proposed in order to reduce ESA dosing but liberal intravenous iron therapy is also associated with complications, and its long-term safety has not yet been adequately investigated. For patients with CKD on dialysis, US medication labels recommend administering ESAs at doses sufficient to avoid transfusions, whereas European and Canadian labels recommend targeting haemoglobin levels of 100–120 g/l and 110–120 g/l, respectively. Treatment of anaemia to haemoglobin levels of 90–110 g/l in patients with CKD accomplishes what we want—a reduced need for transfusions and possible reductions in fatigue, while avoiding high doses of ESA or iron in order to achieve a specific haemoglobin goal.

Key Points

  • Anaemia is a frequent complication in patients with chronic kidney disease (CKD) and is a risk factor for morbidity, mortality and impaired quality of life

  • In contrast to observational datasets and retrospective data analyses, multicentre trials showed that higher haemoglobin target levels and/or higher erythropoiesis-stimulating agent (ESA) doses are associated with increased risks in patients with CKD

  • Anaemia management in CKD has moved from using haemoglobin level as a surrogate end point to use of more patient-relevant clinical outcomes while using the lowest possible ESA dose necessary for transfusion avoidance

  • Naturally occurring near-normal haemoglobin level does not increase the risk of morbidity and mortality in patients with CKD

  • The higher the ESA dose used for achieving target haemoglobin concentrations in CKD patients who respond poorly to ESA treatment, the worse the outcome

  • Beneficial effects of intravenous iron therapy should be weighed against potential harms and hazards associated with its excessive use

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Xia, H. et al. Hematocrit levels and hospitalization risks in hemodialysis. J. Am. Soc. Nephrol. 10, 1309–1316 (1999).

    CAS  PubMed  Google Scholar 

  2. Ma, J. Z. et al. Hematocrit level and associated mortality in hemodialysis patients. J. Am. Soc. Nephrol. 10, 610–619 (1999).

    CAS  PubMed  Google Scholar 

  3. Foley, R. N. et al. The impact of anemia on cardiomyopathy, morbidity, and mortality in end-stage renal disease. Am. J. Kidney Dis. 28, 53–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Kliger, A. S. et al. Erythropoietic stimulating agents and quality of a patient's life: individualizing anemia treatment. Clin. J. Am. Soc. Nephrol. 7, 354–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Locatelli, F. et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant. 19, 121–132 (2004).

    Article  PubMed  Google Scholar 

  6. Levin, A. et al. Haemoglobin at time of referral prior to dialysis predicts survival: in association of haemoglobin with long-term outcomes. Nephrol. Dial. Transplant. 21, 370–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Levin, A. et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am. J. Kidney Dis. 34, 125–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Foley, R. N. et al. Effect of hemoglobin levels in hemodialysis patients with asymptomatic cardiomyopathy. Kidney Int. 58, 1325–1335 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Parfrey, P. S. et al. Double-blind comparison of full and partial anemia correction in incident hemodialysis patients without symptomatic heart disease. J. Am. Soc. Nephrol. 16, 2180–2189 (2005).

    Article  PubMed  Google Scholar 

  10. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Drüeke, T. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    Article  PubMed  Google Scholar 

  13. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  14. Hörl, W. H. Differentiating factors between erythropoiesis-stimulating agents: an update to selection for anemia of chronic kidney disease. Drugs http://dx.doi.org/10.1007/s40265-012-0002-2.

  15. Coyne, D. W. The health-related quality of life was not improved by targeting higher hemoglobin in the Normal Hematocrit Trial. Kidney Int. 82, 235–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fishbane, S. & Wish, J. B. A physician's perseverance uncovers problems in a key nephrology study. Kidney Int. 82, 135–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. [No authors listed] Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. Canadian Erythropoietin Study Group. BMJ 300, 573–578 (1990).

  18. Roger, S. D. et al. Effects of early and late intervention with epoetin alpha on left ventricular mass among patients with chronic kidney disease (stage 3 or 4): results of a randomized clinical trial. J. Am. Soc. Nephrol. 15, 148–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Clement, F. M. et al. An economic evaluation of erythropoiesis agents in CKD. Am. J. Kidney Dis. 56, 1050–1061 (2010).

    Article  PubMed  Google Scholar 

  20. Winkelmayer, W. C. et al. Against TREATing all patients alike: lessons from an FDA Advisory Committee Meeting. J. Am. Soc. Nephrol. 22, 1–2 (2011).

    Article  PubMed  Google Scholar 

  21. Skali, H. et al. Stroke in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia treated with darbepoetin alfa: the trial to reduce cardiovascular events with Aranesp therapy (TREAT) experience. Circulation 124, 2903–2908 (2012).

    Article  CAS  Google Scholar 

  22. Unger, E. F. et al. Erythropoiesis-stimulating agents—time for a reevaluation. N. Engl. J. Med. 362, 189–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. McMurray, J. J. et al. Predictors of fatal and nonfatal cardiovascular events in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia: an analysis of the Trial to Reduce cardiovascular Events with Aranesp (darbepoetin-alfa) Therapy (TREAT). Am. Heart J. 162, 748.e3–755.e3 (2011).

    Article  Google Scholar 

  24. FDA:FDA Drug Safety Communication: Modified Dosing Recommendations to Improve the Safe Use of Erythropoiesis-Stimulating Agents in Chronic Kidney Disease [online], (2011).

  25. Manns, B. J. & Tonelli, M. The new FDA labeling for ESA-implications for patients and providers. Clin. J. Am. Soc. Nephrol. 7, 348–353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Minutolo, R. et al. Hyporesponsiveness to erythropoiesis-stimulating agents and renal survival in non-dialysis CKD patients. Nephrol. Dial. Transplant. 27, 2880–2886 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Tsubakihara, Y. et al. High target hemoglobin with erythropoiesis stimulating agents has advantages in the renal function of non-dialysis chronic kidney disease patients. Ther. Apher. Dial. 16, 529–540 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Lewis, E. F. et al. Darbepoetin alfa impact on health status in diabetes patients with kidney disease: a randomized trial. Clin. J. Am. Soc. Nephrol. 6, 845–855 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Locatelli, F. & Del Vecchio, L. Erythropoietic response to erythropoiesis-stimulating agents and outcome: should we give up the haemoglobin target approach? Nephrol. Dial. Transplant. 26, 2069–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, A. K. What is causing the mortality in treating the anemia of chronic kidney disease: erythropoietin dose or hemoglobin level? Curr. Opin. Nephrol. Hypertens. 19, 420–424 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Freburger, J. K. et al. Changing patterns of anemia management in US hemodialysis patients. Am. J. Med. 125, 906–914 (2012).

    Article  PubMed  Google Scholar 

  32. Himmelfarb, J. & Szczech, L. A. Resolved: targeting a higher hemoglobin is associated with greater risk in patients with CKD anemia: con. J. Am. Soc. Nephrol. 20, 1441–1443 (2009).

    PubMed  Google Scholar 

  33. Singh, A. K. Does TREAT give the boot to ESAs in the treatment of CKD anemia? J. Am. Soc. Nephrol. 21, 2–6 (2010).

    Article  PubMed  Google Scholar 

  34. Weiner, D. E. & Miskulin, D. C. Anemia management in chronic kidney disease: bursting the hemoglobin bubble. Ann. Intern. Med. 153, 53–55 (2010).

    Article  PubMed  Google Scholar 

  35. Singh, A. K. The controversy surrounding hemoglobin and erythropoiesis-stimulating agents: what should we do now? Am. J. Kidney Dis. 52 (6 Suppl.), S5–S13 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Brookhart, M. A. et al. Comparative mortality risk of anemia management practices in incident hemodialysis patients. JAMA 303, 857–864 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Akizawa, T. et al. Positive outcomes of high hemoglobin target in patients with chronic kidney disease not on dialysis: a randomized controlled study. Ther. Apher. Dial. 15, 431–440 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Palmer, S. C. et al. Meta-analysis: erythropoiesis-stimulating agents in patients with chronic kidney disease. Ann. Intern. Med. 153, 23–33 (2010).

    Article  PubMed  Google Scholar 

  39. Jing, Z. et al. Hemoglobin targets for chronic kidney disease patients with anemia: A systematic review and meta-analysis. PLoS ONE 7, e43655 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Winkelmayer, W. What caused excess strokes in patients randomized to darbepoetin in the trial to reduce cardiovascular events with Aranesp therapy (TREAT)?: no smoking gun. Circulation 124, 2805–2808 (2011).

    Article  PubMed  Google Scholar 

  41. Balasubramaniam, G. S. et al. Allosensitization rate of male patients awaiting first kidney grafts after leuko-depleted blood transfusion. Transplantation 93, 418–422 (2012).

    Article  PubMed  Google Scholar 

  42. Opelz, G. et al. Prospective evaluation of pretransplant blood transfusions in cadaver kidney recipients. Transplantation 63, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Obrador, G. T. & Macdougall, I. C. Effect of red cell transfusions on future kidney transplantation. Clin. J. Am. Soc. Nephrol. http://dx.doi.org/10.2215/CJN.00020112.

  44. O'Brien, F. J. et al. Effect of perioperative blood transfusions on long term graft outcomes in renal transplant patients. Clin. Nephrol. 77, 432–437 (2012).

    Article  PubMed  Google Scholar 

  45. Tonelli, M. K. S. et al. Erythropoiesis-stimulating agents for anemia of chronic kidney disease: systematic review and economic evaluation. Technology Report Number 106, Canadian Agency for Drugs and Technologies in Health [online], (2008).

  46. Weiner, D. E. et al. Reducing versus discontinuing erythropoietin at high hemoglobin levels. J. Am. Soc. Nephrol. 18, 3184–3191 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Calvo, J. A. et al. Nadir hemoglobin levels after discontinuating of epoetin in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 1621–1627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fishbane, S. & Berns, J. S. Hemoglobin cycling in hemodialysis patients treated with recombinant human erythropoetin. Kidney Int. 68, 1337–1343 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ebben, J. P. et al. Hemoglobin level variability: associations with comorbidity, intercurrent events, and hospitalizations. Clin. J. Am. Soc. Nephrol. 1, 1205–1210 (2006).

    Article  PubMed  Google Scholar 

  50. Brunelli, S. M. et al. Association of hemoglobin variability and mortality among contemporary incident hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 1733–1740 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eckardt, K. U. et al. Hemoglobin variability does not predict mortality in European hemodialysis patients. J. Am. Soc. Nephrol. 21, 1765–1775 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pérez-Ruixo, J. J. et al. Between subjects variability in haemoglobin and dose are not associated with the erythropoiesis-stimulating agent used to treat anaemia in dialysis: a meta-analysis. Br. J. Clin. Pharmacol. 75, 15–25 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Pisoni, R. L. et al. Facility-level interpatient hemoglobin variability in hemodialysis centers participating in the Dialysis Outcomes and Practice Patterns Study (DOPPS): associations with mortality, patient characteristics, and facility practices. Am. J. Kidney Dis. 57, 266–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int. Suppl. 2, 279–335 (2012).

  55. Locatelli, F. et al. Endorsement of the Kidney Disease Improving Global Outcomes (KDIGO) guidelines on anaemia management in chronic kidney disease: a European Renal Best Practice (ERBP) position statement. Nephrol. Dial. Transplant. (in press).

  56. Heinze, G. et al. Mortality in renal transplant recipients given erythropoietins to increase haemoglobin concentration: cohort study. BMJ 339, b4018 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goodkin, D. A. et al. Naturally occurring higher hemoglobin concentration does not increase mortality among hemodialysis patients. J. Am. Soc. Nephrol. 20, 358–365 (2011).

    Article  Google Scholar 

  58. Winearls, C. G. et al. Effect of human erythropoietin derived from recombinant DNA on the anaemia of patients maintained by chronic haemodialysis. Lancet 2, 1175–1178 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Eschbach, J. W. et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N. Engl. J. Med. 316, 73–78 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Eschbach, J. W. et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann. Intern. Med. 111, 992–1000 (1989).

    Article  CAS  PubMed  Google Scholar 

  61. Streja, E. et al. Erythropoietin, iron depletion, and relative thrombocytosis: a possible explanation for hemoglobin-survival paradox in hemodialysis. Am. J. Kidney Dis. 52, 727–736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Servilla, K. S. et al. Anemia management and association of race with mortality and hospitalization in a large not-for-profit dialysis organization. Am. J. Kidney Dis. 54, 498–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Bradbury, B. D. et al. Effect of epoetin alfa dose changes on hemoglobin and mortality in hemodialysis patients with hemoglobin levels persistently below 11 g/dL. Clin. J. Am. Soc. Nephrol. 4, 630–637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Y. et al. Estimated effect of epoetin dosage on survival among elderly hemodialysis patients in the United States. Clin. J. Am. Soc. Nephrol. 4, 638–644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, O. et al. Relationship between epoetin alfa dose and mortality: findings from a marginal structural model. Clin. J. Am. Soc. Nephrol. 5, 182–188 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koulouridis, I. et al. Dose of erythropoiesis-stimulating agents and adverse outcomes in CKD: a metaregression analysis. Am. J. Kidney Dis. 61, 44–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Bradbury, B. D. et al. Exploring relative mortality and epoetin alfa dose among hemodialysis patients. Am. J. Kidney Dis. 51, 62–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Bradbury, B. D. et al. Greater Epoetin alfa (EPO) doses and short-term mortality risk among hemodialysis patients with hemoglobin levels less than 11 g/dL. Pharmocoepidemiol. Drug Saf. 18, 932–940 (2009).

    Article  CAS  Google Scholar 

  69. Inrig, J. K. et al. Impact of higher hemoglobin targets on blood pressure and clinical outcomes: a secondary analysis of CHOIR. Nephrol. Dial. Transplant. 27, 3606–3614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y. et al. Epoetin requirements predict mortality in hemodialysis patients. Am. J. Kidney Dis. 44, 866–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Regidor, D. L. et al. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J. Am. Soc. Nephrol. 17, 1181–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Kilpatrick, R. et al. Greater epoetin alfa responsiveness is associated with improved survival in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 1077–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. López-Gomez, J. et al. Factors that condition the response to erythropoietin in patients on hemodialysis and their relation to mortality. Kidney Int. 111, S75–S81 (2008).

    Article  CAS  Google Scholar 

  74. Panichi, N. et al. Anaemia and resistance to erythropoiesis-stimulating agents as prognostic factors in haemodialysis patients: results from the RISCAVID study. Nephrol. Dial. Transplant. 26, 2641–2648 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Fukuma, S. et al. Erythropoiesis-stimulating agent responsiveness and mortality in hemodialysis patients: results from a cohort study from the dialysis registry in Japan. Am. J. Kidney Dis. 59, 108–116 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Locatelli, F. et al. Predictors of haemoglobin levels and resistance to erythropoiesis-stimulating agents in patients treated with low-flux haemodialysis, haemofiltration and haemodiafiltration: results of a multicentre randomized and controlled trial. Nephrol. Dial. Transplant. 27, 3594–3600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Locatelli, F. et al. Nutritional-inflammation status and resistance to erythropoietin therapy in haemodialysis patients. Nephrol. Dial. Transplant. 21, 991–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Vaziri, N. D. Anemia and anemia correction: surrogate markers or causes of morbidity in chronic kidney disease. Nat. Clin. Pract. Nephrol. 4, 436–445 (2008).

    Article  PubMed  Google Scholar 

  79. Bode-Böger, S. M. et al. Recombinant human erythropoietin enhances vasoconstrictor tone via endothelin-1 and constrictor prostanoids. Kidney Int. 50, 1255–1261 (1996).

    Article  PubMed  Google Scholar 

  80. Rodrique, M. E. et al. Relationship between eicosanoids and endothelin-1 in the pathogenesis of erythropoietin-induced hypertension in uremic rats. J. Cardiovasc. Pharmacol. 41, 388–395 (2003).

    Article  Google Scholar 

  81. Barrett, J. D. et al. Erythropoietin upregulates angiotensin receptors in cultured rat vascular smooth muscle cells. J. Hypertens. 16, 1749–1757 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Anagnostou, A. et al. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc. Natl. Acad. Sci. USA 87, 5978–5982 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Akimoto, T. et al. Involvement of erythropoietin-induced cytosolic free calcium mobilization in activation of mitogen-activated protein kinase and DNA synthesis in vascular smooth muscle cells. J. Hypertens. 19, 193–202 (2011).

    Article  Google Scholar 

  84. Stohlawetz, P. J. et al. Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood 95, 2983–2989 (2000).

    CAS  PubMed  Google Scholar 

  85. Kahraman, S. et al. Impact of rHuEPO therapy initiation on soluble adhesion molecule levels in haemodialysis patients. Nephrology (Carlton) 10, 264–269 (2005).

    Article  CAS  Google Scholar 

  86. Coleman, T. R. et al. Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities. Proc. Natl. Acad. Sci. USA 103, 5965–5970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vaziri, N. D. Mechanism of erythropoietin-induced hypertension. Am. J. Kidney Dis. 33, 821–828 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Coulon, P. J. et al. Normalization of hematocrit in hemodialysis patients with cardiac disease does not increase blood pressure. Ren. Fail. 22, 435–444 (2000).

    Article  Google Scholar 

  89. Szczech, L. A. et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 74, 791–798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Solomon, S. D. et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 363, 1146–1155 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Klarenbach, S. W. et al. Clinical practice guidelines for supplemental therapies and issues. Kidney Int. Suppl. 110, S19–S24 (2008).

    Article  Google Scholar 

  92. Iglehart, J. K. Bundled payment for ESRD—including ESAs in Medicare's dialysis package. N. Engl. J. Med. 364, 593–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Pisoni, R. L. et al. The DOPPS practice monitor for US dialysis care: trends through August 2011. Am. J. Kidney Dis. 60, 160–165 (2012).

    Article  PubMed  Google Scholar 

  94. Coyne, D. W. et al. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients' Response to IV Iron with Elevated Ferritin (DRIVE) Study. J. Am. Soc. Nephrol. 18, 975–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Kapoian, T. et al. Ferric gluconate reduces epoetin requirements in hemodialysis patients with elevated ferritin. J. Am. Soc. Nephrol. 19, 372–379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Coyne, D. W. It's time to compare anemia management strategies in hemodialysis. Clin. J. Am. Soc. Nephrol. 5, 740–742 (2010).

    Article  PubMed  Google Scholar 

  97. Feldman, H. I. et al. Administration of parenteral iron and mortality among hemodialysis patients. J. Am. Soc. Nephrol. 15, 1623–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Vaziri, N. D. Understanding iron: promoting its safe use in CKD patients. Am. J. Kidney Dis. http://dx.doi.org/10.1053/j.ajkd.2012.10.027.

  99. Kalantar-Zadeh, K. et al. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin. J. Am. Soc. Nephrol. 1 (Suppl. 1), S9–S18 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Cavanese, C. et al. Validation of serum ferritin values by magnetic susceptometry in predicting iron overload in dialysis patients. Kidney Int. 65, 1091–1098 (2004).

    Article  Google Scholar 

  101. Ferrari, P. et al. Serum iron markers are inadequate for guiding iron repletion in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 77–83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rostocker, G. et al. Hemodialysis-associated hemosiderosis in the era of erythropoisis-stimulating agents. Am. J. Med. 125, 991–999 (2012).

    Article  Google Scholar 

  103. Kalantar-Zadeh, K., Kalantar-Zadeh, K. & Lee, G. H. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin. J. Am. Soc. Nephrol. 1 (Suppl. 1), S9–S18 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Locatelli, F. & Del Vecchio, L. New erythropoiesis-stimulating agents and new iron formulations. Contrib. Nephrol. 171, 255–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Barraclough, K. A. et al. A randomized controlled trial of oral heme iron polypeptide versus oral iron supplementation for the treatment of anaemia in peritoneal dialysis patients: HEMATOCRIT trial. Nephrol. Dial. Transplant. 27, 4146–4153 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Hörl, W. H. Clinical aspects of iron use in the anemia of kidney disease. J. Am. Soc. Nephrol. 18, 382–393 (2007).

    Article  PubMed  CAS  Google Scholar 

  107. Bennett, C. L. et al. A review of safety, efficacy, and utilization of erythropoietin, darbepoetin, and peginesatide for patients with cancer or chronic kidney disease: a report from the southern network on adverse reactions (SONAR). Semin. Thromb. Hemost. 38, 783–796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Walter H. Hörl declares associations with the following companies: Amgen (speakers' bureau), Sandoz (consultant), Hexal (consultant, speakers' bureau), Fresenius (speakers' bureau, research support), Vifor (consultant, speakers' bureau, grant/research support), Medice (speakers' bureau), Abbott (speakers' bureau) and Takeda (consultant).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörl, W. Anaemia management and mortality risk in chronic kidney disease. Nat Rev Nephrol 9, 291–301 (2013). https://doi.org/10.1038/nrneph.2013.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing