Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions

Abstract

Functional deterioration of the peritoneal membrane in patients on peritoneal dialysis has been described as being the result of a combination of neoangiogenesis and fibrosis. Glucose, glucose degradation products, and the unphysiological pH of the dialysate solution contribute to these changes. Although newer solutions clearly perform better in terms of their biocompatibility in an in vitro setting and in animal models, the benefit of such solutions over older solutions in the clinical setting is so far unproven. The difficulties in showing a benefit of the newer, more biocompatible solutions in the clinical setting can be explained by the fact that other factors also affect the properties of the peritoneal membrane. These factors are often neglected in clinical studies, which results in unnoticed differences in case-mix and blurs the potential impact of the novel solutions. However, many of these factors are modifiable, and attention should be paid to them in clinical practice to maintain the integrity of the peritoneal membrane. This Review focuses on factors that potentially influence the integrity of the peritoneal membrane, other than those associated with the peritoneal dialysis fluid itself.

Key Points

  • Factors other than those related to the peritoneal dialysis fluid can have important effects on the peritoneal membrane, and can result in variability in peritoneal function

  • The degree of glycaemic control rather than diabetes per se can cause changes to the peritoneal membrane; studies should therefore use haemoglobin A1c level instead of the dichotomized classification of diabetes/no diabetes

  • A high salt intake can induce changes in the peritoneal membrane by inducing hypertonic exchanges and by directly inducing peritoneal membrane changes

  • Peritoneal membrane characteristics can be influenced by genetic polymorphisms; further exploration of genetic polymorphisms in patients with encapsulating peritoneal sclerosis are warranted

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified schematic showing factors, other than PD fluid, that potentially influence peritoneal membrane degradation.

Similar content being viewed by others

References

  1. Lameire, N., Van Biesen, W. & Vanholder, R. The role of peritoneal dialysis as first modality in an integrative approach to patients with end-stage renal disease. Perit. Dial. Int. 20 (Suppl. 2), S134–S141 (2000).

    PubMed  Google Scholar 

  2. Davies, S. J. et al. What really happens to people on long-term peritoneal dialysis? Kidney Int. 54, 2207–2217 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Williams, J. D. et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13, 470–479 (2002).

    PubMed  Google Scholar 

  4. Wieslander, A. P. Cytotoxicity of peritoneal dialysis fluid—is it related to glucose breakdown products? Nephrol. Dial. Transplant. 11, 958–959 (1996).

    CAS  PubMed  Google Scholar 

  5. Fusshoeller, A., Baehr, J., Grabensee, B. & Plum, J. Biocompatibility of a bicarbonate/lactate-buffered PD fluid tested with a double-chamber cell culture system. Perit. Dial. Int. 25, 387–393 (2005).

    CAS  PubMed  Google Scholar 

  6. Grossin, N. et al. Improved in vitro biocompatibility of bicarbonate-buffered peritoneal dialysis fluid. Perit. Dial. Int. 26, 664–670 (2006).

    CAS  PubMed  Google Scholar 

  7. Oh, E. J. et al. Impact of low glucose degradation product bicarbonate/lactate-buffered dialysis solution on the epithelial-mesenchymal transition of peritoneum. Am. J. Nephrol. 31, 58–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Witowski, J. et al. Effect of glucose degradation products on human peritoneal mesothelial cell function. J. Am. Soc. Nephrol. 11, 729–739 (2000).

    CAS  PubMed  Google Scholar 

  9. Witowski, J. et al. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J. Am. Soc. Nephrol. 12, 2434–2441 (2001).

    CAS  PubMed  Google Scholar 

  10. Kim, C. D. et al. Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model. Ther. Apher. Dial. 11, 56–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Mortier, S., De Vriese, A. S. & Lameire, N. Recent concepts in the molecular biology of the peritoneal membrane—implications for more biocompatible dialysis solutions. Blood Purif. 21, 14–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mortier, S., Faict, D., Schalkwijk, C. G., Lameire, N. H. & De Vriese, A. S. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 66, 1257–1265 (2004).

    CAS  PubMed  Google Scholar 

  13. Mortier, S., Faict, D., Lameire, N. H. & De Vriese, A. S. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 67, 1559–1565 (2005).

    CAS  PubMed  Google Scholar 

  14. Mortier, S., Faict, D., Gericke, M., Lameire, N. & De Vriese, A. Effects of new peritoneal dialysis solutions on leukocyte recruitment in the rat peritoneal membrane. Nephron Exp. Nephrol. 101, e139–e145 (2005).

    Article  PubMed  Google Scholar 

  15. Witowski, J. & Jorres, A. Effects of peritoneal dialysis solutions on the peritoneal membrane: clinical consequences. Perit. Dial. Int. 25 (Suppl. 3), S31–S34 (2005).

    CAS  PubMed  Google Scholar 

  16. Johnson, D. W. et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J. Am. Soc. Nephrol. 23, 1097–1107 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sampimon, D. E., Coester, A. M., Struijk, D. G. & Krediet, R. T. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 26, 291–298 (2011).

    Article  PubMed  Google Scholar 

  18. Garcia-Lopez, E., Lindholm, B. & Davies, S. An update on peritoneal dialysis solutions. Nat. Rev. Nephrol. 8, 224–233 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Rumpsfeld, M., McDonald, S. P., Purdie, D. M., Collins, J. & Johnson, D. W. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am. J. Kidney Dis. 43, 492–501 (2004).

    Article  PubMed  Google Scholar 

  20. Van Biesen, W. et al. The personal dialysis capacity test is superior to the peritoneal equilibration test to discriminate inflammation as the cause of fast transport status in peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 1, 269–274 (2006).

    Article  PubMed  Google Scholar 

  21. Nakamoto, H. et al. Effect of diabetes on peritoneal function assessed by personal dialysis capacity test in patients undergoing CAPD. Am. J. Kidney Dis. 40, 1045–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Honda, K. et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin. J. Am. Soc. Nephrol. 3, 720–728 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stoenoiu, M. S. et al. Experimental diabetes induces functional and structural changes in the peritoneum. Kidney Int. 62, 668–678 (2002).

    Article  PubMed  Google Scholar 

  24. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

  25. De Vriese, A. S., Tilton, R. G., Stephan, C. C. & Lameire, N. H. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J. Am. Soc. Nephrol. 12, 1734–1741 (2001).

    CAS  Google Scholar 

  26. Combet, S. et al. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J. Am. Soc. Nephrol. 12, 2146–2157 (2001).

    CAS  PubMed  Google Scholar 

  27. Vrtovsnik, F. et al. Induction of chronic kidney failure in a long-term peritoneal exposure model in the rat: effects on functional and structural peritoneal alterations. Perit. Dial. Int. 30, 558–569 (2010).

    Article  PubMed  Google Scholar 

  28. Kakuta, T. et al. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int. 68, 1326–1336 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Osada, S. et al. Alterations in proteoglycan components and histopathology of the peritoneum in uraemic and peritoneal dialysis (PD) patients. Nephrol. Dial. Transplant. 24, 3504–3512 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. De Vriese, A. S., Tilton, R. G., Mortier, S. & Lameire, N. H. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol. Dial. Transplant. 21, 2549–2555 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Numata, M. et al. Possible pathologic involvement of receptor for advanced glycation end products (RAGE) for development of encapsulating peritoneal sclerosis in Japanese CAPD patients. Clin. Nephrol. 62, 455–460 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Pletinck, A. et al. Salt intake induces epithelial-to-mesenchymal transition of the peritoneal membrane in rats. Nephrol. Dial. Transplant. 25, 1688–1696 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Pecoits-Filho, R., Carvalho, M. J., Stenvinkel, P., Lindholm, B. & Heimburger, O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit. Dial. Int. 26, 53–63 (2006).

    CAS  PubMed  Google Scholar 

  34. Stenvinkel, P., Barany, P., Heimburger, O., Pecoits-Filho, R. & Lindholm, B. Mortality, malnutrition, and atherosclerosis in ESRD: what is the role of interleukin-6? Kidney Int. Suppl. 103–108 (2002).

  35. Sawai, A. et al. Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients. Nephrol. Dial. Transplant. 26, 2322–2332 (2011).

    Article  PubMed  Google Scholar 

  36. Oh, K. H. et al. Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol. Dial. Transplant. 25, 1639–1646 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Gillerot, G. et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int. 67, 2477–2487 (2005).

    Article  PubMed  Google Scholar 

  38. Hwang, Y. H. et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit. Dial. Int. 29, 81–88 (2009).

    CAS  PubMed  Google Scholar 

  39. Oh, K. H. et al. Baseline peritoneal solute transport rate is not associated with markers of systemic inflammation or comorbidity in incident Korean peritoneal dialysis patients. Nephrol. Dial. Transplant. 23, 2356–2364 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, Y. T. et al. Association between interleukin-10 gene polymorphism -592 (A/C) and peritoneal transport in patients undergoing peritoneal dialysis. Nephrology (Carlton) 16, 663–671 (2011).

    CAS  Google Scholar 

  41. Johnson, D. W. et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol. Dial. Transplant. 25, 1973–1979 (2010).

    Article  PubMed  Google Scholar 

  42. Rodrigues, A. S. et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am. J. Nephrol. 27, 84–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wong, T. Y. et al. Association of ENOS polymorphism with basal peritoneal membrane function in uremic patients. Am. J. Kidney Dis. 42, 781–786 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Zeier, M. et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 63, 298–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Thomas, M. C. Advanced glycation end products. Contrib. Nephrol. 170, 66–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Thornalley, P. J. & Rabbani, N. Highlights and hotspots of protein glycation in end-stage renal disease. Semin. Dial. 22, 400–404 (2009).

    Article  PubMed  Google Scholar 

  47. De Vriese, A. S., Flyvbjerg, A., Mortier, S., Tilton, R. G. & Lameire, N. H. Inhibition of the interaction of AGE–RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J. Am. Soc. Nephrol. 14, 2109–2118 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Shu, K. H. et al. Association of interleukin-1β gene polymorphism and peritonitis in uremic patients undergoing peritoneal dialysis. Blood Purif. 32, 156–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Uchiyama, K. et al. Impact of a genetic polymorphism of the interleukin-1 receptor antagonist on technique survival in peritoneal dialysis patients. Blood Purif. 23, 450–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Bellon, T. et al. Alternative activation of macrophages in human peritoneum: implications for peritoneal fibrosis. Nephrol. Dial. Transplant. 26, 2995–3005 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Hagg, D. A. et al. Expression of chemokine (C-C motif) ligand 18 in human macrophages and atherosclerotic plaques. Atherosclerosis 204, e15–e20 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Sampimon, D. E., Vlijm, A., Phoa, S. S., Krediet, R. T. & Struijk, D. G. Encapsulating peritoneal sclerosis in a peritoneal dialysis patient using biocompatible fluids only: is Alport syndrome a risk factor? Perit. Dial. Int. 30, 240–242 (2010).

    Article  PubMed  Google Scholar 

  53. Nessim, S. J., Perl, J. & Bargman, J. M. The renin-angiotensin-aldosterone system in peritoneal dialysis: is what is good for the kidney also good for the peritoneum? Kidney Int. 78, 23–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Noh, H. et al. Angiotensin II mediates high glucose-induced TGF-β1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit. Dial. Int. 25, 38–47 (2005).

    CAS  PubMed  Google Scholar 

  55. Kiribayashi, K. et al. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney Int. 67, 1126–1135 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Nakamoto, H. et al. Role of the renin-angiotensin system in the pathogenesis of peritoneal fibrosis. Perit. Dial. Int. 28 (Suppl. 3), S83–S87 (2008).

    CAS  PubMed  Google Scholar 

  57. Mizuiri, S. et al. Effects of new peritoneal dialysis solutions, pyridoxamine and AT1 receptor blocker, on TGF-β1 and VEGF expression in rat peritoneal mesothelial cells. Am. J. Nephrol. 30, 295–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Duman, S. et al. Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution? Perit. Dial. Int. 21, 219–224 (2001).

    CAS  PubMed  Google Scholar 

  59. Kolesnyk, I., Struijk, D. G., Dekker, F. W. & Krediet, R. T. Effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in patients with chronic kidney disease. Neth. J. Med. 68, 15–23 (2010).

    CAS  PubMed  Google Scholar 

  60. Jing, S., Kezhou, Y., Hong, Z., Qun, W. & Rong, W. Effect of renin-angiotensin system inhibitors on prevention of peritoneal fibrosis in peritoneal dialysis patients. Nephrology (Carlton) 15, 27–32 (2010).

    Article  CAS  Google Scholar 

  61. Wontanatawatot, W., Eiam-Ong, S., Leelahavanichkul, A. & Kanjanabuch, T. An update on RAAS blockade and peritoneal membrane preservation: the ace of art. J. Med. Assoc. Thai. 94 (Suppl. 4), S175–S183 (2011).

    PubMed  Google Scholar 

  62. Lewis, R. V. & McDevitt, D. G. Adverse reactions and interactions with beta-adrenoceptor blocking drugs. Med. Toxicol. 1, 343–361 (1986).

    Article  CAS  PubMed  Google Scholar 

  63. Oules, R., Challah, S. & Brunner, F. P. Case-control study to determine the cause of sclerosing peritoneal disease. Nephrol. Dial. Transplant. 3, 66–69 (1988).

    CAS  PubMed  Google Scholar 

  64. Hendriks, P. M. et al. Peritoneal sclerosis in chronic peritoneal dialysis patients: analysis of clinical presentation, risk factors, and peritoneal transport kinetics. Perit. Dial. Int. 17, 136–143 (1997).

    CAS  PubMed  Google Scholar 

  65. Stegmayr, B. G. Beta-blockers may cause ultrafiltration failure in peritoneal dialysis patients. Perit. Dial. Int. 17, 541–545 (1997).

    CAS  PubMed  Google Scholar 

  66. Topley, N. et al. Human peritoneal mesothelial cell prostaglandin synthesis: induction of cyclooxygenase mRNA by peritoneal macrophage-derived cytokines. Kidney Int. 46, 900–909 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, H. et al. A selective cyclooxygenase-2 inhibitor decreases transforming growth factor-beta1 synthesis and matrix production in human peritoneal mesothelial cells. Cell Biol. Int. 31, 508–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Douma, C. E., de Waart, D. R., Zemel, D., Struijk, D. G. & Krediet, R. T. Prostaglandin inhibition by intraperitoneal indomethacin has no effect on peritoneal permeability during stable CAPD. Nephrol. Dial. Transplant. 16, 803–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Aroeira, L. S. et al. Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane. J. Am. Soc. Nephrol. 20, 582–592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fabbrini, P. et al. Celecoxib treatment reduces peritoneal fibrosis and angiogenesis and prevents ultrafiltration failure in experimental peritoneal dialysis. Nephrol. Dial. Transplant. 24, 3669–3676 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Polubinska, A. et al. Dialysis solution containing hyaluronan: effect on peritoneal permeability and inflammation in rats. Kidney Int. 57, 1182–1189 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Flessner, M. F. The role of extracellular matrix in transperitoneal transport of water and solutes. Perit. Dial. Int. 21 (Suppl. 3), S24–S29 (2001).

    PubMed  Google Scholar 

  73. Harenberg, J. Review of pharmacodynamics, pharmacokinetics, and therapeutic properties of sulodexide. Med. Res. Rev. 18, 1–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. De Vriese, A. S., Mortier, S. & Lameire, N. H. Non anticoagulant effects of heparin: implications for animal models of peritoneal dialysis. Perit. Dial. Int. 21 (Suppl. 3), S354–S356 (2001).

    PubMed  Google Scholar 

  75. Margetts, P. Heparin and the peritoneal membrane. Perit. Dial. Int. 29, 16–19 (2009).

    PubMed  Google Scholar 

  76. Gambaro, G. et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N. A. S. randomized trial. J. Am. Soc. Nephrol. 13, 1615–1625 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Pletinck, A. et al. Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol. Dial. Transplant. 27, 548–556 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Fracasso, A. et al. Effect of oral treatment with the glycosaminoglycan sulodexide on peritoneal transport in CAPD patients. Perit. Dial. Int. 23, 595–599 (2003).

    CAS  PubMed  Google Scholar 

  79. Horiuchi, T. et al. Image analysis of remesothelialization following chemical wounding of cultured human peritoneal mesothelial cells: the role of hyaluronan synthesis. Kidney Int. 64, 2280–2290 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Sitter, T., Sauter, M. & Haslinger, B. Modulation of fibrinolytic system components in mesothelial cells by hyaluronan. Perit. Dial. Int. 23, 222–227 (2003).

    CAS  PubMed  Google Scholar 

  81. Szeto, C. C. et al. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis. Am. J. Kidney Dis. 36, 609–614 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, T. et al. Hyaluronan decreases peritoneal fluid absorption: effect of molecular weight and concentration of hyaluronan. Kidney Int. 55, 667–673 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, T. et al. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume. Kidney Int. 53, 496–502 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, T. et al. Intraperitoneal addition of hyaluronan improves peritoneal dialysis efficiency. Perit. Dial. Int. 19 (Suppl. 2), S106–S111 (1999).

    PubMed  Google Scholar 

  85. Moberly, J. B. et al. Effects of intraperitoneal hyaluronan on peritoneal fluid and solute transport in peritoneal dialysis patients. Perit. Dial. Int. 23, 63–73 (2003).

    PubMed  Google Scholar 

  86. Rosengren, B. I., Carlsson, O. & Rippe, B. Hyaluronan and peritoneal ultrafiltration: a test of the “filter-cake” hypothesis. Am. J. Kidney Dis. 37, 1277–1285 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, T. et al. Hyaluronan decreases peritoneal fluid absorption in peritoneal dialysis. J. Am. Soc. Nephrol. 8, 1915–1920 (1997).

    CAS  PubMed  Google Scholar 

  88. Kihm, L. P. et al. Benfotiamine protects against peritoneal and kidney damage in peritoneal dialysis. J. Am. Soc. Nephrol. 22, 914–926 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flessner, M. F. et al. Peritoneal changes after exposure to sterile solutions by catheter. J. Am. Soc. Nephrol. 18, 2294–2302 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Peters, T. et al. Mouse model of foreign body reaction that alters the submesothelium and transperitoneal transport. Am. J. Physiol. Renal Physiol. 300, F283–F289 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Pletinck and W. Van Biesen researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed/edited the manuscript before submission. R. Vanholder and N. Veys made a substantial contribution to discussion of content and were involved in the review/editing of manuscript before submission.

Corresponding author

Correspondence to Wim Van Biesen.

Ethics declarations

Competing interests

The authors' laboratory has received unrestricted grants from Baxter and Fresenius for basic scientific research. Wim Van Biesen has received honoraria from Baxter, Fresenius and Gambro. Raymond Vanholder has received honoraria from Fresenius and is a consultant for Baxter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pletinck, A., Vanholder, R., Veys, N. et al. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nat Rev Nephrol 8, 542–550 (2012). https://doi.org/10.1038/nrneph.2012.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.144

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research