Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kidney aging—inevitable or preventable?

Abstract

The aging process affects all organs, including the kidneys. As part of this process, progressive scarring and a measurable decline in renal function occur in most people over time. The improved understanding of the processes that can lead to and/or hasten scarring and loss of renal function over time parallels advances in our understanding of the aging process. Clinical factors, including hypertension, diabetes mellitus, obesity, abnormal lipid levels and vitamin D deficiency, have been associated with increasing renal sclerosis with age. In addition, tissue factors such as angiotensin II, advanced glycation end products, oxidative stress and Klotho are associated with renal aging. These associations and possible interventions, including the control of blood pressure, blood sugar, weight, diet and calorie restriction might make renal aging more preventable than inevitable.

Key Points

  • A progressive decline in renal function occurs in most, but not all, people as a result of aging

  • Several genetic and environmental factors accelerate the age-related decline in kidney function

  • Work over the past 10 years has identified numerous hormonal and metabolic pathways that hold great promise for slowing the age-related decline in kidney function

  • Control of hypertension, metabolic factors and inflammatory processes in aging individuals might decrease the rate of renal functional decline associated with age

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mediators of age-related decline in renal function.
Figure 2: Potential strategies for the prevention of age-related nephropathy.

Similar content being viewed by others

References

  1. Rowe, J. W., Andres, R., Tobin, J. D., Norris, A. H. & Shock, N. W. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J. Gerontol. 31, 155–163 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. & Levey, A. S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    Article  PubMed  Google Scholar 

  3. Berg, U. B. Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol. Dial. Transplant. 21, 2577–2582 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Tauchi, H., Tsuboi, K. & Okutomi, J. Age changes in the human kidney of the different races. Gerontologia 17, 87–97 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Luft, F. C. et al. The effects of age, race and heredity on glomerular filtration rate following volume expansion and contraction in normal man. Am. J. Med. Sci. 279, 15–24 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Fliser, D. et al. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int. 51, 1196–1204 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Ribstein, J., Du Cailar, G. & Mimran, A. Glucose tolerance and age-associated decline in renal function of hypertensive patients. J. Hypertens. 19, 2257–2264 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Rule, A. D. et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med. 152, 561–567 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Musso, C. G., Macías Nuñez, J. F. & Oreopoulos, D. G. Physiological similarities and differences between renal aging and chronic renal disease. J. Nephrol. 20, 586–587 (2007).

    PubMed  Google Scholar 

  11. Ostchega, Y., Dillon, C. F., Hughes, J. P., Carroll, M. & Yoon, S. Trends in hypertension prevalence, awareness, treatment, and control in older US adults: data from the National Health and Nutrition Examination Survey 1988 to 2004. J. Am. Geriatr. Soc. 55, 1056–1065 (2007).

    Article  PubMed  Google Scholar 

  12. Celermajer, D. S. et al. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am. Coll. Cardiol. 24, 471–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki, R. et al. Vascular remodeling of the carotid artery in patients with untreated essential hypertension increases with age. Hypertens. Res. 25, 373–379 (2002).

    Article  PubMed  Google Scholar 

  14. Park, J. B. & Schiffrin, E. L. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J. Hypertens. 19, 921–930 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Tracy, R. E. & Ishii, T. Hypertensive renovasculopathies and the rise of blood pressure with age in Japan and USA. Int. Urol. Nephrol. 32, 109–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Vazquez-Padron, R. I. et al. Aging exacerbates neointimal formation, and increases proliferation and reduces susceptibility to apoptosis of vascular smooth muscle cells in mice. J. Vasc. Surg. 40, 1199–1207 (2004).

    Article  PubMed  Google Scholar 

  17. Heeneman, S., Sluimer, J. C. & Daemen, M. J. Angiotensin-converting enzyme and vascular remodeling. Circ. Res. 101, 441–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lemay, J., Hale, T. M. & deBlois, D. Neointimal-specific induction of apoptosis by losartan results in regression of vascular lesion in rat aorta. Eur. J. Pharmacol. 618, 45–51 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Roman, M. J. et al. Differential effects of angiotensin converting enzyme inhibition and diuretic therapy on reductions in ambulatory blood pressure, left ventricular mass, and vascular hypertrophy. Am. J. Hypertens. 11, 387–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Mayet, J. et al. The effects of antihypertensive therapy on carotid vascular structure in man. Cardiovasc. Res. 30, 147–152 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Boutouyrie, P. et al. Local pulse pressure and regression of arterial wall hypertrophy during long-term antihypertensive treatment. Circulation 101, 2601–2606 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Erlingsdottir, A., Indridason, O. S., Thorvaldsson, O. & Edvardsson, V. O. Blood pressure in children and target-organ damage later in life. Pediatr. Nephrol. 25, 323–328 (2010).

    Article  PubMed  Google Scholar 

  23. Dao, H. H., Essalihi, R., Bouvet, C. & Moreau, P. Evolution and modulation of age-related medial elastocalcinosis: impact on large artery stiffness and isolated systolic hypertension. Cardiovasc. Res. 66, 307–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Franklin, S. S. et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation 103, 1245–1249 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Taddei, S. et al. Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation 91, 1981–1987 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Luyckx, V. A., Compston, C. A., Simmen, T. & Mueller, T. F. Accelerated senescence in kidneys of low-birth-weight rats after catch-up growth. Am. J. Physiol. Renal Physiol. 297, F1697–F1705 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Cullen-McEwen, L. A., Kett, M. M., Dowling, J., Anderson, W. P. & Bertram, J. F. Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41, 335–340 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Tada, M. et al. Histopathological evidence of poor prognosis in patients with vesicoureteral reflux. Pediatr. Nephrol. 16, 482–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Lozada, L. G., Tapia, E., Johnson, R. J., Rodríguez-Iturbe, B. & Herrera-Acosta, J. Glomerular hemodynamic changes associated with arteriolar lesions and tubulointerstitial inflammation. Kidney Int. Suppl. S9–S14 (2003).

  30. Saran, R., Marshall, S. M., Madsen, R., Keavey, P. & Tapson, J. S. Long-term follow-up of kidney donors: a longitudinal study. Nephrol. Dial. Transplant. 12, 1615–1621 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Saxena, A. B. et al. Adaptive hyperfiltration in the aging kidney after contralateral nephrectomy. Am. J. Physiol. Renal Physiol. 291, F629–F634 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hill, G. S. Hypertensive nephrosclerosis. Curr. Opin. Nephrol. Hypertens. 17, 266–270 (2008).

    Article  PubMed  Google Scholar 

  33. Gagliano, N. et al. Age-dependent expression of fibrosis-related genes and collagen deposition in rat kidney cortex. J. Gerontol. A Biol. Sci. Med. Sci. 55, B365–B372 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Reckelhoff, J. F. et al. Changes in nitric oxide precursor, L-arginine, and metabolites, nitrate and nitrite, with aging. Life Sci. 55, 1895–1902 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Tan, J. C. et al. Effects of aging on glomerular function and number in living kidney donors. Kidney Int. 78, 686–692 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1078–F1094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wald, R. et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302, 1179–1185 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Waikar, S. S. & Winkelmayer, W. C. Chronic on acute renal failure: long-term implications of severe acute kidney injury. JAMA 302, 1227–1229 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Rizza, S. et al. Occult impaired glucose regulation in patients with atherosclerosis is associated to the number of affected vascular districts and inflammation. Atherosclerosis 212, 316–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Park, C. S. et al. Relation between C-reactive protein, homocysteine levels, fibrinogen, and lipoprotein levels and leukocyte and platelet counts, and 10-year risk for cardiovascular disease among healthy adults in the USA. Am. J. Cardiol. 105, 1284–1288 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Safdar, A. et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE 5, e10778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vlassara, H. et al. Identifying advanced glycation end products as a major source of oxidants in aging: implications for the management and/or prevention of reduced renal function in elderly persons. Semin. Nephrol. 29, 594–603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Willershausen, B. et al. Association between chronic dental infection and acute myocardial infarction. J. Endod. 35, 626–630 (2009).

    Article  PubMed  Google Scholar 

  45. Mei, C. & Zheng, F. Chronic inflammation potentiates kidney aging. Semin. Nephrol. 29, 555–568 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Odden, M. C. et al. Age and cystatin C in healthy adults: a collaborative study. Nephrol. Dial. Transplant. 25, 463–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Kato, S. et al. Pathological influence of obesity on renal structural changes in chronic kidney disease. Clin. Exp. Nephrol. 13, 332–340 (2009).

    Article  PubMed  Google Scholar 

  48. Kasiske, B. L. & Napier, J. Glomerular sclerosis in patients with massive obesity. Am. J. Nephrol. 5, 45–50 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Chagnac, A. et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol. Dial. Transplant. 23, 3946–3952 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. de Boer, I. H. et al. Obesity and change in estimated GFR among older adults. Am. J. Kidney Dis. 54, 1043–1051 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Praga, M. et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 16, 1790–1798 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Pataky, Z. et al. Metabolic normality in overweight and obese subjects. Which parameters? Which risks? Int. J. Obes. (London) doi:10.1038/ijo.2010.264.

  53. Alexander, M. P. et al. Kidney pathological changes in metabolic syndrome: a cross-sectional study. Am. J. Kidney Dis. 53, 751–759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Whaley-Connell, A., Pavey, B. S., Afroze, A. & Bakris, G. L. Obesity and insulin resistance as risk factors for chronic kidney disease. J. Cardiometab. Syndr. 1, 209–214 (2006).

    Article  PubMed  Google Scholar 

  55. Zoccali, C. Overweight, obesity and metabolic alterations in chronic kidney disease. Prilozi 30, 17–31 (2009).

    CAS  PubMed  Google Scholar 

  56. Ritz, E. Metabolic syndrome and kidney disease. Blood Purif. 26, 59–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Serpa Neto, A. et al. Effect of weight loss after Roux-en-Y gastric bypass, on renal function and blood pressure in morbidly obese patients. J. Nephrol. 22, 637–646 (2009).

    CAS  PubMed  Google Scholar 

  58. Morley, J. E. The metabolic syndrome and aging. J. Gerontol. A Biol. Sci. Med. Sci. 59, 139–142 (2004).

    Article  PubMed  Google Scholar 

  59. Cogan, M. G. Angiotensin II: a powerful controller of sodium transport in the early proximal tubule. Hypertension 15, 451–458 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Norman, J. T. The role of angiotensin II in renal growth. Ren. Physiol. Biochem. 14, 175–185 (1991).

    CAS  PubMed  Google Scholar 

  61. Maric, C. et al. Effects of angiotensin II on cultured rat renomedullary interstitial cells are mediated by AT1A receptors. Am. J. Physiol. 271, F1020–F1028 (1996).

    CAS  PubMed  Google Scholar 

  62. Wolf, G., Ziyadeh, F. N., Zahner, G. & Stahl, R. A. Angiotensin II is mitogenic for cultured rat glomerular endothelial cells. Hypertension 27, 897–905 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Anderson, S. & Brenner, B. M. Effects of aging on the renal glomerulus. Am. J. Med. 80, 435–442 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Wolf, G. et al. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J. Clin. Invest. 100, 1047–1058 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Inserra, F. et al. Renal interstitial sclerosis in aging: effects of enalapril and nifedipine. J. Am. Soc. Nephrol. 7, 676–680 (1996).

    CAS  PubMed  Google Scholar 

  66. Vaughan, D. E., Lazos, S. A. & Tong, K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J. Clin. Invest. 95, 995–1001 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heudes, D. et al. Effect of chronic ANG I-converting enzyme inhibition on aging processes. I. Kidney structure and function. Am. J. Physiol. 266, R1038–R1051 (1994).

    CAS  PubMed  Google Scholar 

  68. Remuzzi, A., Puntorieri, S., Battaglia, C., Bertani, T. & Remuzzi, G. Angiotensin converting enzyme inhibition ameliorates glomerular filtration of macromolecules and water and lessens glomerular injury in the rat. J. Clin. Invest. 85, 541–549 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zoja, C. et al. Renal protective effect of angiotensin-converting enzyme inhibition in aging rats. Am. J. Med. 92, 60S–63S (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Anderson, S., Rennke, H. G. & Zatz, R. Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats. Am. J. Physiol. 267, F35–F43 (1994).

    CAS  PubMed  Google Scholar 

  71. Michel, J. B. et al. Effect of chronic ANG I-converting enzyme inhibition on aging processes. II. Large arteries. Am. J. Physiol. 267, R124–R135 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Ferder, L., Inserra, F., Romano, L., Ercole, L. & Pszenny, V. Decreased glomerulosclerosis in aging by angiotensin-converting enzyme inhibitors. J. Am. Soc. Nephrol. 5, 1147–1152 (1994).

    CAS  PubMed  Google Scholar 

  73. Ma, L. J. et al. Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J. Am. Soc. Nephrol. 16, 966–976 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. de Cavanagh, E. M., Inserra, F. & Ferder, L. Angiotensin II blockage: a strategy to slow aging by protecting mitochondria. Cardiovasc. Res. 89, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Mitani, H. et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 39, 838–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Basso, N., Paglia, N., Cini, R., Inserra, F. & Terragno, N. A. Effect of omapatrilat on the aging process of the normal rat. Cell. Mol. Biol. (Noisy-le-grand) 51, 557–564 (2005).

    CAS  Google Scholar 

  77. Thomas, M. C. et al. Interactions between renin angiotensin system and advanced glycation in the kidney. J. Am. Soc. Nephrol. 16, 2976–2984 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Basso, N. et al. Protective effect of the inhibition of the renin-angiotensin system on aging. Regul. Pept. 128, 247–252 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Negri, A. L. The klotho gene: a gene predominantly expressed in the kidney is a fundamental regulator of aging and calcium/phosphorus metabolism. J. Nephrol. 18, 654–658 (2005).

    CAS  PubMed  Google Scholar 

  80. Monacelli, F. et al. Effects of valsartan therapy on protein glycoxidation. Metabolism 55, 1619–1624 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Gilliam-Davis, S. et al. Long-term AT1 receptor blockade improves metabolic function and provides renoprotection in Fischer-344 rats. Am. J. Physiol. Heart Circ. Physiol. 293, H1327–H1333 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Baumann, M., Bartholome, R., Peutz-Kootstra, C. J., Smits, J. F. & Struijker-Boudier, H. A. Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Am. J. Hypertens. 21, 177–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Jung, F. F., Kennefick, T. M., Ingelfinger, J. R., Vora, J. P. & Anderson, S. Down-regulation of the intrarenal renin-angiotensin system in the aging rat. J. Am. Soc. Nephrol. 5, 1573–1580 (1995).

    CAS  PubMed  Google Scholar 

  84. Lu, X., Li, X., Li, L., Li, C. & Wang, H. Variation of intrarenal angiotensin II and angiotensin II receptors by acute renal ischemia in the aged rat. Ren. Fail. 18, 19–29 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Ding, G. et al. Tubular cell senescence and expression of TGF-β1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp. Mol. Pathol. 70, 43–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Mattson, M. P. & Maudsley, S. Live longer sans the AT1A receptor. Cell. Metab. 9, 403–405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruiz-Torres, M. P. et al. Age-related increase in expression of TGF-beta1 in the rat kidney: relationship to morphologic changes. J. Am. Soc. Nephrol. 9, 782–791 (1998).

    CAS  PubMed  Google Scholar 

  88. Roberts, A. B., McCune, B. K. & Sporn, M. B. TGF-beta: regulation of extracellular matrix. Kidney Int. 41, 557–559 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Wolf, G. Link between angiotensin II and TGF-beta in the kidney. Miner. Electrolyte Metab. 24, 174–180 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Noble, N. A. & Border, W. A. Angiotensin II in renal fibrosis: should TGF-beta rather than blood pressure be the therapeutic target? Semin. Nephrol. 17, 455–466 (1997).

    CAS  PubMed  Google Scholar 

  91. Peters, H., Noble, N. A. & Border, W. A. Transforming growth factor-beta in human glomerular injury. Curr. Opin. Nephrol. Hypertens. 6, 389–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Frishberg, Y. & Kelly, C. J. TGF-beta and regulation of interstitial nephritis. Miner. Electrolyte Metab. 24, 181–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Samuel, C. S. & Hewitson, T. D. Relaxin and the progression of kidney disease. Curr. Opin. Nephrol. Hypertens. 18, 9–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Thomas, S. E. et al. Tubulointerstitial disease in aging: evidence for underlying peritubular capillary damage, a potential role for renal ischemia. J. Am. Soc. Nephrol. 9, 231–242 (1998).

    CAS  PubMed  Google Scholar 

  95. Sonaka, I., Futami, Y. & Maki, T. L-arginine-nitric oxide pathway and chronic nephropathy in aged rats. J. Gerontol. 49, B157–B161 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Nakayama, I., Kawahara, Y., Tsuda, T., Okuda, M. & Yokoyama, M. Angiotensin II inhibits cytokine-stimulated inducible nitric oxide synthase expression in vascular smooth muscle cells. J. Biol. Chem. 269, 11628–11633 (1994).

    CAS  PubMed  Google Scholar 

  97. Arima, S., Ito, S., Omata, K., Takeuchi, K. & Abe, K. High glucose augments angiotensin II action by inhibiting NO synthesis in in vitro microperfused rabbit afferent arterioles. Kidney Int. 48, 683–689 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Hogan, M., Cerami, A. & Bucala, R. Advanced glycosylation endproducts block the antiproliferative effect of nitric oxide. Role in the vascular and renal complications of diabetes mellitus. J. Clin. Invest. 90, 1110–1115 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McQuillan, L. P., Leung, G. K., Marsden, P. A., Kostyk, S. K. & Kourembanas, S. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am. J. Physiol. 267, H1921–H1927 (1994).

    CAS  PubMed  Google Scholar 

  100. Huang, P. L. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol. Metab. 20, 295–302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wolf, G. Molecular mechanisms of angiotensin II in the kidney: emerging role in the progression of renal disease: beyond haemodynamics. Nephrol. Dial. Transplant. 13, 1131–1142 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Satriano, J. A. et al. Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J. Clin. Invest. 92, 1564–1571 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Adler, S., Huang, H., Wolin, M. S. & Kaminski, P. M. Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J. Am. Soc. Nephrol. 15, 52–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Radner, W., Höger, H., Lubec, B., Salzer, H. & Lubec, G. L-arginine reduces kidney collagen accumulation and N-epsilon-(carboxymethyl)lysine in the aging NMRI-mouse. J. Gerontol. 49, M44–M46 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Smith, A. R. & Hagen, T. M. Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-alpha-lipoic acid. Biochem. Soc. Trans. 31, 1447–1449 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Smith, A. R., Visioli, F., Frei, B. & Hagen, T. M. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell 5, 391–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Kim, J. H. et al. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J. Appl. Physiol. 107, 1249–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Donato, A. J. et al. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am. J. Physiol. Heart Circ. Physiol. 297, H425–H432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Verbeke, P., Perichon, M., Borot-Laloi, C., Schaeverbeke, J. & Bakala, H. Accumulation of advanced glycation endproducts in the rat nephron: link with circulating AGEs during aging. J. Histochem. Cytochem. 45, 1059–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Schleicher, E. D., Wagner, E. & Nerlich, A. G. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest. 99, 457–468 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vlassara, H. Advanced glycosylation in nephropathy of diabetes and aging. Adv. Nephrol. Necker Hosp. 25, 303–315 (1996).

    CAS  PubMed  Google Scholar 

  112. He, C., Sabol, J., Mitsuhashi, T. & Vlassara, H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48, 1308–1315 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Cerami, C. et al. Tobacco smoke is a source of toxic reactive glycation products. Proc. Natl Acad. Sci. USA 94, 13915–13920 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, C. et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc. Natl Acad. Sci. USA 101, 11767–11772 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cai, W. et al. AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am. J. Physiol. Cell Physiol. 294, C145–C152 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Cai, W. et al. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am. J. Physiol. Cell Physiol. 298, C624–C634 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Menini, S. et al. Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 55, 1642–1650 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Cai, W. et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am. J. Pathol. 170, 1893–1902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vlassara, H. et al. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J. Clin. Endocrinol. Metab. 94, 4483–4491 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, Y. M. et al. Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc. Natl Acad. Sci. USA 93, 3902–3907 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Corman, B. et al. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proc. Natl Acad. Sci. USA 95, 1301–1306 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vlassara, H. et al. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc. Natl Acad. Sci. USA 89, 12043–12047 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Teillet, L. et al. Food restriction prevents advanced glycation end product accumulation and retards kidney aging in lean rats. J. Am. Soc. Nephrol. 11, 1488–1497 (2000).

    CAS  PubMed  Google Scholar 

  124. Reckelhoff, J. F. et al. Vitamin E ameliorates enhanced renal lipid peroxidation and accumulation of F2-isoprostanes in aging kidneys. Am. J. Physiol. 274, R767–R774 (1998).

    CAS  PubMed  Google Scholar 

  125. Mitobe, M. et al. Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Exp. Nephrol. 101, e67–e74 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Storz, P. Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci. STKE 2006, re3 (2006).

    PubMed  Google Scholar 

  127. Miyazawa, M. et al. The role of mitochondrial superoxide anion (O2(-)) on physiological aging in C57BL/6J mice. J. Radiat. Res. (Tokyo) 50, 73–83 (2009).

    Article  CAS  Google Scholar 

  128. Liang, H. et al. Genetic mouse models of extended lifespan. Exp. Gerontol. 38, 1353–1364 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Brown-Borg, H. M., Borg, K. E., Meliska, C. J. & Bartke, A. Dwarf mice and the ageing process. Nature 384, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Murakami, S., Salmon, A. & Miller, R. A. Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 17, 1565–1566 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Migliaccio, E. et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Pérez, V. I. et al. Is the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790, 1005–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ushio-Fukai, M., Zafari, A. M., Fukui, T., Ishizaka, N. & Griendling, K. K. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 271, 23317–23321 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. de Cavanagh, E. M. et al. Superoxide dismutase and glutathione peroxidase activities are increased by enalapril and captopril in mouse liver. FEBS Lett. 361, 22–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Cruz, C. I., Ruiz-Torres, P., del Moral, R. G., Rodríguez-Puyol, M. & Rodríguez-Puyol, D. Age-related progressive renal fibrosis in rats and its prevention with ACE inhibitors and taurine. Am. J. Physiol. Renal Physiol. 278, F122–F129 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Kim, H. J., Jung, K. J., Yu, B. P., Cho, C. G. & Chung, H. Y. Influence of aging and calorie restriction on MAPKs activity in rat kidney. Exp. Gerontol. 37, 1041–1053 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Lee, J. H. et al. Suppression of apoptosis by calorie restriction in aged kidney. Exp. Gerontol. 39, 1361–1368 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Moorhead, J. F., Chan, M. K., El-Nahas, M. & Varghese, Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  140. Ruan, X. Z., Varghese, Z., Powis, S. H. & Moorhead, J. F. Nuclear receptors and their coregulators in kidney. Kidney Int. 68, 2444–2461 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Ruan, X. Z., Varghese, Z. & Moorhead, J. F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 5, 713–721 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Keane, W. F. The role of lipids in renal disease: future challenges. Kidney Int. Suppl. S27–S31 (2000).

  143. Keane, W. F. & Lyle, P. A. Kidney disease and cardiovascular disease: implications of dyslipidemia. Cardiol. Clin. 23, 363–372 (2005).

    Article  PubMed  Google Scholar 

  144. Muntner, P., Coresh, J., Smith, J. C., Eckfeldt, J. & Klag, M. J. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 58, 293–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Sun, L., Halaihel, N., Zhang, W., Rogers, T. & Levi, M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J. Biol. Chem. 277, 18919–18927 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Proctor, G. et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55, 2502–2509 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Jiang, T. et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J. Biol. Chem. 280, 32317–32325 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, Z. et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54, 2328–2335 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Pallottini, V. et al. Modified HMG-CoA reductase and LDLr regulation is deeply involved in age-related hypercholesterolemia. J. Cell Biochem. 98, 1044–1053 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Vilà, L. et al. Hypertriglyceridemia and hepatic steatosis in senescence-accelerated mouse associate to changes in lipid-related gene expression. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1219–1227 (2007).

    Article  PubMed  Google Scholar 

  151. Erhuma, A., Salter, A. M., Sculley, D. V., Langley-Evans, S. C. & Bennett, A. J. Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. Am. J. Physiol. Endocrinol. Metab. 292, E1702–E1714 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Jiang, T., Liebman, S. E., Lucia, M. S., Li, J. & Levi, M. Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int. 68, 2608–2620 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Jiang, T., Liebman, S. E., Lucia, M. S., Phillips, C. L. & Levi, M. Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease. J. Am. Soc. Nephrol. 16, 2385–2394 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Ye, P., Wang, Z. J., Zhang, X. J. & Zhao, Y. L. Age-related decrease in expression of peroxisome proliferator-activated receptor alpha and its effects on development of dyslipidemia. Chin. Med. J. (Engl.) 118, 1093–1098 (2005).

    CAS  Google Scholar 

  155. Sanguino, E. et al. Atorvastatin reverses age-related reduction in rat hepatic PPARalpha and HNF-4. Br. J. Pharmacol. 145, 853–861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cha, D. R. et al. Peroxisome proliferator-activated receptor-alpha deficiency protects aged mice from insulin resistance induced by high-fat diet. Am. J. Nephrol. 27, 479–482 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Han, Y. et al. Fenofibrate reduces age-related hypercholesterolemia in normal rats on a standard diet. Korean J. Physiol. Pharmacol. 14, 77–81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Vilà, L. et al. Hepatic gene expression changes in an experimental model of accelerated senescence: the SAM-P8 mouse. J. Gerontol. A Biol. Sci. Med. Sci. 63, 1043–1052 (2008).

    Article  PubMed  Google Scholar 

  159. Amador-Noguez, D. et al. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 6, 453–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, W. D. et al. Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box m1b transcription. Hepatology 51, 953–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Lee, J. et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285, 12604–12611 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang, T. et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy. Diabetes 56, 2485–2493 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, X. X. et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Renal Physiol. 297, F1587–F1596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, X. X., Jiang, T. & Levi, M. Nuclear hormone receptors in diabetic nephropathy. Nat. Rev. Nephrol. 6, 342–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Russell, S. J. & Kahn, C. R. Endocrine regulation of ageing. Nat. Rev. Mol. Cell Biol. 8, 681–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Masoro, E. J. Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim. Biophys. Acta 1790, 1040–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Westphal, C. H., Dipp, M. A. & Guarente, L. A therapeutic role for sirtuins in diseases of aging? Trends Biochem. Sci. 32, 555–560 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Finkel, T., Deng, C. X. & Mostoslavsky, R. Recent progress in the biology and physiology of sirtuins. Nature 460, 587–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Imai, S. SIRT1 and caloric restriction: an insight into possible trade-offs between robustness and frailty. Curr. Opin. Clin. Nutr. Metab. Care 12, 350–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 22, 1753–1757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gerhart-Hines, Z. et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J. 26, 1913–1923 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3, e1759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Banks, A. S. et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell. Metab. 8, 333–341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschöp, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell. Metab. 8, 347–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Bauer, J. H. Age-related changes in the renin-aldosterone system. Physiological effects and clinical implications. Drugs Aging 3, 238–245 (1993).

    Article  CAS  PubMed  Google Scholar 

  184. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell. Metab. 8, 157–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell. Metab. 10, 392–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chaudhary, N. & Pfluger, P. T. Metabolic benefits from Sirt1 and Sirt1 activators. Curr. Opin. Clin. Nutr. Metab. Care 12, 431–437 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Cantó, C. & Auwerx, J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cantó, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sharp, Z. D. & Bartke, A. Evidence for down-regulation of phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR)-dependent translation regulatory signaling pathways in Ames dwarf mice. J. Gerontol. A Biol. Sci. Med. Sci. 60, 293–300 (2005).

    Article  PubMed  Google Scholar 

  193. Stanfel, M. N., Shamieh, L. S., Kaeberlein, M. & Kennedy, B. K. The TOR pathway comes of age. Biochim. Biophys. Acta 1790, 1067–1074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y. & Shadel, G. S. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell. Metab. 5, 265–277 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Selman, C. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  197. Kurosu, H. et al. Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kuro-o, M. A potential link between phosphate and aging—lessons from Klotho-deficient mice. Mech. Ageing Dev. 131, 270–275 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Huang, C. L. Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int. 77, 855–860 (2010).

    Article  PubMed  Google Scholar 

  200. Haruna, Y. et al. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl Acad. Sci. USA 104, 2331–2336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kuro-o, M. Klotho and aging. Biochim. Biophys. Acta 1790, 1049–1058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kuro-o, M. Klotho. Pflugers Arch. 459, 333–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, H. et al. Klotho is a target gene of PPAR-γ. Kidney Int. 74, 732–739 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Yang, H. C. et al. The PPARγ agonist pioglitazone ameliorates aging-related progressive renal injury. J. Am. Soc. Nephrol. 20, 2380–2388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Li, Y. C. Renoprotective effects of vitamin D analogs. Kidney Int. 78, 134–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  206. Zhang, Z. et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int. 73, 163–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Zhang, Y., Kong, J., Deb, D. K., Chang, A. & Li, Y. C. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J. Am. Soc. Nephrol. 21, 966–973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tan, X., Li, Y. & Liu, Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J. Am. Soc. Nephrol. 17, 3382–3393 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Guijarro, C. & Egido, J. Transcription factor-κB (NF-κB) and renal disease. Kidney Int. 59, 415–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  210. Wang, X. X. et al. Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. Am. J. Physiol. Renal Physiol. 300, F801–F810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ravani, P. et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 75, 88–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  212. Dusso, A. S. & Tokumoto, M. Defective renal maintenance of the vitamin D endocrine system impairs vitamin D renoprotection: a downward spiral in kidney disease. Kidney Int. 79, 715–729 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. [No authors listed] Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 349, 1857–1863 (1997).

  215. Ruggenenti, P. et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 354, 359–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  216. Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354, 131–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  218. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. van der Meer, I. M., Cravedi, P. & Remuzzi, G. The role of renin angiotensin system inhibition in kidney repair. Fibrogenesis Tissue Repair 3, 7 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Guney, I. et al. Antifibrotic effects of aldosterone receptor blocker (spironolactone) in patients with chronic kidney disease. Ren. Fail. 31, 779–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Parving, H. H., Persson, F., Lewis, J. B., Lewis, E. J. & Hollenberg, N. K. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    Article  CAS  PubMed  Google Scholar 

  222. Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article  CAS  PubMed  Google Scholar 

  223. Hackam, D. G. et al. The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2—therapy. Can. J. Cardiol. 26, 249–258 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Duprez, D. A., Munger, M. A., Botha, J., Keefe, D. L. & Charney, A. N. Aliskiren for geriatric lowering of systolic hypertension: a randomized controlled trial. J. Hum. Hypertens. 24, 600–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. ALLHAT Collaborative Research Group. Diuretic versus alpha-blocker as first-step antihypertensive therapy: final results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension 42, 239–246 (2003).

  226. Agodoa, L. Y. et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA 285, 2719–2728 (2001).

    Article  CAS  PubMed  Google Scholar 

  227. Miyagawa, K. et al. Renoprotective effect of calcium channel blockers in combination with an angiotensin receptor blocker in elderly patients with hypertension. A randomized crossover trial between benidipine and amlodipine. Clin. Exp. Hypertens. 32, 1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  228. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    Article  PubMed  Google Scholar 

  229. Windler, E., Schöffauer, M. & Zyriax, B. C. The significance of low HDL-cholesterol levels in an ageing society at increased risk for cardiovascular disease. Diab. Vasc. Dis. Res. 4, 136–142 (2007).

    Article  PubMed  Google Scholar 

  230. Navaneethan, S. D. & Yehnert, H. Bariatric surgery and progression of chronic kidney disease. Surg. Obes. Relat. Dis. 5, 662–665 (2009).

    Article  PubMed  Google Scholar 

  231. Ben-Avraham, S., Harman-Boehm, I., Schwarzfuchs, D. & Shai, I. Dietary strategies for patients with type 2 diabetes in the era of multi-approaches; review and results from the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Res. Clin. Pract. 86 (Suppl. 1), S41–S48 (2009).

    Article  CAS  PubMed  Google Scholar 

  232. Kelly, R. B. Diet and exercise in the management of hyperlipidemia. Am. Fam. Physician 81, 1097–1102 (2010).

    PubMed  Google Scholar 

  233. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  234. Cases, A. & Coll, E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. Suppl. S87–S93 (2005).

  235. Tonelli, M. et al. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation 112, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Samuelsson, O. et al. Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol. Dial. Transplant. 12, 1908–1915 (1997).

    Article  CAS  PubMed  Google Scholar 

  237. Fried, L. F., Orchard, T. J. & Kasiske, B. L. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int. 59, 260–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  238. Sacks, F. M. & Katan, M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am. J. Med. 113 (Suppl. 9B), 13S–24S (2002).

    Article  CAS  PubMed  Google Scholar 

  239. Gugliucci, A. et al. Short-term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults. Ann. Nutr. Metab. 54, 197–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  240. Choudhury, D., Tuncel, M. & Levi, M. Disorders of lipid metabolism and chronic kidney disease in the elderly. Semin. Nephrol. 29, 610–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Patel, A. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  242. Blumenthal, J. A. et al. Effects of the dietary approaches to stop hypertension diet alone and in combination with exercise and caloric restriction on insulin sensitivity and lipids. Hypertension 55, 1199–1205 (2010).

    Article  CAS  PubMed  Google Scholar 

  243. Willcox, D. C., Willcox, B. J., Todoriki, H. & Suzuki, M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J. Am. Coll. Nutr. 28 (Suppl.), 500S–516S (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Robert W. Schrier for more than 30 years of inspiration to work in the field of aging and potential mechanisms to slow down the progression of age-related renal disease. The authors would also like to thank Jolene Richardson and Amber Leider for their administrative assistance. Some of the original studies from the authors' laboratory cited in this review were supported by NIH grants R01 AG026529 and R01 DK066029.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Moshe Levi.

Ethics declarations

Competing interests

M. Levi has received grant/research support from Abbott, Daiichi Sankyo, Genzyme, Intercept and Merck. D. Choudhury declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, D., Levi, M. Kidney aging—inevitable or preventable?. Nat Rev Nephrol 7, 706–717 (2011). https://doi.org/10.1038/nrneph.2011.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing