Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

How metabolic acidosis and kidney disease may accelerate the aging process

Abstract

Consuming a lower acid (and particularly lower phosphate) diet and/or supplementing the diet with base precursors, such as bicarbonate, might have a number of mitigating effects on the aging process. These include: (1) slowing progression of fibrosis by reduction of high endogenous acid production to preserve net acid excretion and minimize the degree of systemic acidosis; (2) avoiding the downregulation of klotho, a membrane and soluble factor associated with aging. Klotho declines when constant high dietary phosphate intake leads to an increase in FGF23 production; and (3) increasing activity of the enzyme telomerase, an important factor in maintaining telomere length, another factor associated with longer lifespan. Current evidence is based on studies in invertebrate and small animal models. These results, and extrapolations of associated human studies, suggest that low acid-producing diets, or neutralization of the low grade metabolic acidosis seen in humans with age-related renal dysfunction could potentially lead to a longer, healthier lifespan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential acid and base content in common dietary sources.

Similar content being viewed by others

References

  1. Di Iorio B, Aucella F, Conte G, Cupisti A, Santoro D. A prospective, multicenter, randomized, controlled study: the correction of metabolic acidosis with use of bicarbonate in Chronic Renal Insufficiency (UBI) Study. J Nephrol. 2012;25:437–40. https://doi.org/10.5301/jn.5000014.

    Article  PubMed  CAS  Google Scholar 

  2. White WE, Yaqoob MM, Harwood SM. Aging and uremia: is there cellular and molecular crossover? World J Nephrol. 2015;4:19–30.

    Article  Google Scholar 

  3. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    Article  CAS  Google Scholar 

  4. Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 1976;31:155–63.

    Article  CAS  Google Scholar 

  5. Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age. Kidney Int. 1984;26:861–8.

    Article  CAS  Google Scholar 

  6. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33:278–85.

    Article  CAS  Google Scholar 

  7. Bushinsky DA, Lam BC, Nespeca R, Sessler NE, Grynpas MD. Decreased bone carbonate content in response to metabolic, but not respiratory, acidosis. Am J Physiol. 1993;265:F530–6.

    PubMed  CAS  Google Scholar 

  8. Mitch WE, Du J, Bailey JL, Price SR. Mechanisms causing muscle proteolysis in uremia: the influence of insulin and cytokines. Min Electrolyte Metab. 1999;25:216–9.

    Article  CAS  Google Scholar 

  9. Lemann J Jr, Lennon EJ, Goodman AD, Relman AS. The role of fixed tissue buffers in acid-base regulation. Trans Assoc Am Physicians. 1964;77:188–95.

    PubMed  CAS  Google Scholar 

  10. Adler S, Lindeman RD, Yiengst MJ, Beard E, Shock NW. Effect of acute acid loading on urinary acid excretion by the aging human kidney. J Lab Clin Med. 1968;72:278–89.

    PubMed  CAS  Google Scholar 

  11. Uribarri J, Douyon H, Oh MS. A re-evaluation of the urinary parameters of acid production and excretion in patients with chronic renal acidosis. Kidney Int. 1995;47:624–7.

    Article  CAS  Google Scholar 

  12. Agarwal BN, Cabebe FG. Renal acidification in elderly subjects. Nephron. 1980;26:291–5.

    Article  CAS  Google Scholar 

  13. Arnett TR, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology. 1986;119:119–24.

    Article  CAS  Google Scholar 

  14. Bushinsky DA, Smith SB, Gavrilov KL, Gavrilov LF, Li J, Levi-Setti R. Acute acidosis-induced alteration in bone bicarbonate and phosphate. Am J Physiol Ren Physiol. 2002;283:F1091–7.

    Article  Google Scholar 

  15. Frick KK, Bushinsky DA. Chronic metabolic acidosis reversibly inhibits extracellular matrix gene expression in mouse osteoblasts. Am J Physiol. 1998;275:F840–7. https://doi.org/10.1152/ajprenal.1998.275.5.F840.

    Article  PubMed  CAS  Google Scholar 

  16. Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Investig. 1996;97:1447–53.

    Article  CAS  Google Scholar 

  17. Rajan VR, Mitch WE. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact. Pediatr Nephrol. 2008;23:527–35.

    Article  Google Scholar 

  18. Wesson DE, Jo CH, Simoni J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int. 2012;82:1184–94. https://doi.org/10.1038/ki.2012.267.

    Article  PubMed  CAS  Google Scholar 

  19. Wesson DE, Simoni J. Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int. 2009;75:929–35. https://doi.org/10.1038/ki.2009.6.

    Article  PubMed  CAS  Google Scholar 

  20. Goraya N, Simoni J, Jo C, Wesson DE. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy. Kidney Int. 2012;81:86–93. https://doi.org/10.1038/ki.2011.313.

    Article  PubMed  CAS  Google Scholar 

  21. Lennon EJ, Lemann J Jr. Influence of diet composition on endogenous fixed acid production. Am J Clin Nutr. 1968;21:451–6.

    Article  CAS  Google Scholar 

  22. Kurtz I, Maher T, Hulter HN, Schambelan M, Sebastian A. Effect of diet on plasma acid-base composition in normal humans. Kidney Int 1983;24:670–80.

    Article  CAS  Google Scholar 

  23. Barber PJ, Rawlings JM, Markwell PJ, Elliott J. Effect of dietary phosphate restriction on renal secondary hyperparathyroidism in the cat. J Small Anim Pract. 1999;40:62–70.

    Article  CAS  Google Scholar 

  24. Shiguang Liu L, Darry L Q. How fibroblast growth factor 23 works. J Am Soc Neph. 2007;18:1637–47. https://doi.org/10.1681/ASN.2007010068.

    Article  CAS  Google Scholar 

  25. Kuro-O M. Phosphate and Klotho. Kidney Int. 2011;79121:S20–3. https://doi.org/10.1038/ki.2011.26.

    Article  PubMed  CAS  Google Scholar 

  26. Haussler MR, Whitfield GK, Haussler CA, et al. 1,25 Dihydroxyvitamin D and klotho: a tale of two renal hormones coming of age. Vitam Horm. 2016;100:165–230.

    Article  CAS  Google Scholar 

  27. John GB, Cheng CY, Kuro-o M. Role of Klotho in aging, phosphate metabolism, and CKD. Am J Kidney Dis. 2011;58:127–34. https://doi.org/10.1053/j.ajkd.2010.12.027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Isakova T, Cai X, Lee J, Xie D, et al. Longitudinal FGF23 Trajectories and mortality in patients with CKD. J Am Soc Nephrol. 2018;29:579–90. https://doi.org/10.1681/ASN.2017070772.

    Article  PubMed  CAS  Google Scholar 

  29. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829–33. https://doi.org/10.1126/science.1112766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB. 2010;24:3562–71. https://doi.org/10.1096/fj.09-152488.

    Article  CAS  Google Scholar 

  31. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–36. https://doi.org/10.1681/ASN.2009121311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Muñoz-Castañeda JR, Herencia C, Pendón-Ruiz de Mier MV, et al. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats. FASEB J 2017;31:3858–67. https://doi.org/10.1096/fj.201700006R.

    Article  PubMed  Google Scholar 

  33. Stubbs JR, Liu S, Tang W, et al. Role of hyperphosphatemia and 1,25-dihydroxyvitamin D in vascular calcification and mortality in fibroblastic growth factor 23 null mice. J Am Soc Nephrol. 2007;18:2116–24.

    Article  CAS  Google Scholar 

  34. Leibrock CB, Voelkl J, Kohlhofer U, Quintanilla-Martinez L, Kuro-O M, Lang F. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice. Am J Physiol Ren Physiol. 2016;310:F102–8. https://doi.org/10.1152/ajprenal.00037.2015.

    Article  CAS  Google Scholar 

  35. Garcia CK, Wright WE, Shay JW. Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res. 2007;35:7406–16.

    Article  CAS  Google Scholar 

  36. Ameh OI, Okpechi IG, Dandara C, Kengne AP. Association between telomere length, chronic kidney disease, and renal traits: a systematic review. OMICS. 2017;21:143–55. https://doi.org/10.1089/omi.2016.0180.

    Article  PubMed  CAS  Google Scholar 

  37. Wong LS, van der Harst P, de Boer RA, et al. Renal dysfunction is associated with shorter telomere length in heart failure. Clin Res Cardiol. 2009;98:629–34. https://doi.org/10.1007/s00392-009-0048-7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wills LP, Schnellmann RG. Telomeres and telomerase in renal health. J Am Soc Nephrol. 2011;22:39–41. https://doi.org/10.1681/ASN.2010060662.

    Article  PubMed  Google Scholar 

  39. McClelland R, Christensen K, Mohammed S.workwas done on behalf of the pSoBiD team et al. Acceleratedageing and renal dysfunction links lower socioeconomic status and dietaryphosphate intake. Aging. 2016;8:1135–49.

    Article  CAS  Google Scholar 

  40. Gong Y, Tian G, Xue H, Zhang X, Zhao Y, Cheng G. Higher adherence to the ‘vegetable-rich’ dietary pattern is related to longer telomere length in women. Clin Nutr. 2017: S0261-561430166-8. https://doi.org/10.1016/j.clnu.2017.05.005.

  41. Crous-Bou M, Fung TT, Prescott J, et al. Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. Br Med J. 2014;349:g6674. https://doi.org/10.1136/bmj.g6674.

    Article  CAS  Google Scholar 

  42. Milte CM, Russell AP, Ball K, Crawford D, Salmon J, McNaughton SA. Diet quality and telomere length in older Australian men and women. Eur J Nutr. 2018;57:363–72. https://doi.org/10.1007/s00394-016-1326-6.

    Article  PubMed  CAS  Google Scholar 

  43. Pérez LM, Amaral MA, Mundstock E, et al. Effects of diet on telomere length: systematic review and meta-analysis. Public Health Genomics. 2017;20:286–92. https://doi.org/10.1159/000486586.

    Article  PubMed  Google Scholar 

  44. Raschenberger J, Kollerits B, Titze S, et al. Do telomeres have a higher plasticity than thought? Results from the German Chronic Kidney Disease (GCKD) study as a high-risk population. Exp Gerontol. 2015;72:162–6. https://doi.org/10.1016/j.exger.2015.09.019.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang WG, Jia LP, Ma J, et al. Peripheral blood leukocyte telomere length is associated with age but not renal function: a cross-sectional follow-up study. J Nutr Health Aging. 2018;22:276–81. https://doi.org/10.1007/s12603-017-0905-4.

    Article  PubMed  CAS  Google Scholar 

  46. Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol. 2013;48:1030–42.

    Article  CAS  Google Scholar 

  47. Lo YF, Yang SS, Seki G, et al. Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int. 2011;79:730–41.

    Article  CAS  Google Scholar 

  48. Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9:1048–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, AS, died shortly after the original draft of this manuscript was completed. AS was one of the early pioneers in research on dietary acid loads and their potential pathophysiologic effects.

Funding

This article is published as part of a supplement sponsored by NuOmix-Research k.s. The conference was financially supported by Protina Pharmazeutische GmbH, Germany, and Sirius Pharma, Germany, and organized by NuOmix-Research k.s. Neither company had any role in writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda Ann Frassetto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frassetto, L.A., Sebastian, A. & DuBose Jr, T.D. How metabolic acidosis and kidney disease may accelerate the aging process. Eur J Clin Nutr 74 (Suppl 1), 27–32 (2020). https://doi.org/10.1038/s41430-020-0693-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-020-0693-5

This article is cited by

Search

Quick links