Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Early intervention in acute kidney injury

Abstract

The prevalence of acute kidney injury (AKI) in the US is increasing, which can be attributed in part to the aging population and the pandemic of obesity, diabetes and hypertension. Individuals over the age of 70 years constitute 7% of the US population, but account for 36–70% of AKI cases. Presently, major efforts are underway to enable the early detection of AKI by use of various innovative biomarkers, thereby facilitating early intervention. Now is the time, therefore, to consider potential interventions to attenuate or prevent AKI. Several randomized studies have failed to alter the course of AKI, but these studies have been complicated by extrarenal consequences, which could have obscured the potential intrarenal benefit of the agent. Thus, agents that have exclusive effects on renal hemodynamics and tubular function, or the intrarenal infusion of short-acting agents that do not have systemic effects, need to be considered in future studies for the prevention of AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of dopamine administration with and without ANP on ischemic AKI.
Figure 2: Effect of ANP on ischemic acute kidney disease.
Figure 3: Effect of hANP on need for dialysis need and dialysis-free survival.

Similar content being viewed by others

References

  1. U. S. Department of Health and Human Services. National Center for Disease Control and Prevention National Center for Health Statistics, National Health Statistics Reports. No. 5, July 30 (2008).

  2. United States Renal Disease Survey, 2006. United States Renal Data System. Annual data report, 2006 (USRDS Coordinating Center, Minneapolis, MN, 2006).

  3. Uchino, S. et al. Acute renal failure in critically Ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    Article  CAS  Google Scholar 

  4. Waikar, S. S. & Bonventre, J. V. Biomarkers for the diagnosis of acute kidney injury. Nephron Clin. Pract. 109, c192–c197 (2008).

    Article  CAS  Google Scholar 

  5. Nickolas, T. L. et al. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase–associated lipocalin for diagnosing acute kidney injury. Ann. Intern. Med. 148, 810–819 (2009).

    Article  Google Scholar 

  6. Miller, T. R. et al. Urinary diagnostic indices in acute renal failure: a prospective study. Ann. Intern. Med. 89, 47–50 (1978).

    Article  CAS  Google Scholar 

  7. Carvounis, C. P., Nisar, S. & Guro-Razuman, S. Significance of the fractional excretion of urea in the differential diagnosis of acute kidney failure. Kidney Int. 62, 2223–2229 (2002).

    Article  CAS  Google Scholar 

  8. Pépin, M. N., Bouchard, J., Legault, L. & Éthier, J. Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am. J. Kidney Dis. 50, 566–573 (2007).

    Article  Google Scholar 

  9. Bouchard, J. et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 76, 422–427 (2009).

    Article  Google Scholar 

  10. Imai, Y. et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289, 2104–2112 (2003).

    Article  Google Scholar 

  11. Weiderman, H. et al. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 354, 2564–2575 (2006).

    Article  Google Scholar 

  12. Schrier, R. W., Wang, W., Poole, B. & Mitra, A. Acute renal failure: definitions, diagnosis, mechanisms, and therapy. J. Clin. Invest. 114, 5–14 (2004).

    Article  CAS  Google Scholar 

  13. Schrier, R. W. & Wang, W. Acute renal failure and sepsis. N. Engl. J. Med. 351, 159–169 (2004).

    Article  CAS  Google Scholar 

  14. Olson, L. J., Lowe, D. G. & Drewett, J. G. Novel natriuretic peptide receptor/guanylyl cyclase A-selective agonist inhibits angiotensin II and forskolin-evoked aldosterone synthesis in a human zona glomerulosa cell line. Mol. Pharmacol. 50, 430–435 (1996).

    CAS  PubMed  Google Scholar 

  15. Marin-Grez, M., Fleming, J. T. & Steinhausen, M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 324, 470–476 (1986).

    Article  Google Scholar 

  16. Potter, L. R., Abbey-Hosch, S. & Dickey, D. M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 27, 47–72 (2006).

    Article  CAS  Google Scholar 

  17. Nakamoto, M., Shapiro, J. I., Shanley, P., Chan, L. & Schrier, R. W. The in vitro and in vivo protective effect of atriopeptin III on ischemic acute renal failure. J. Clin. Invest. 80, 698–705 (1987).

    Article  CAS  Google Scholar 

  18. Conger, J. D., Falk, S. A., Yuan, B. H. & Schrier R. W. Atrial natriuretic peptide and dopamine in a rat model of ischemic acute renal failure. Kidney Int. 35, 1126–1132 (1989).

    Article  CAS  Google Scholar 

  19. Rahman, S. N. et al. Effects of atrial natriuretic peptide in clinical acute renal failure. Kidney Int. 45, 1731–1738 (1994).

    Article  CAS  Google Scholar 

  20. Allgren, R. L. et al. Anaritide in acute tubular necrosis. N. Engl. J. Med. 336, 828–834 (1997).

    Article  CAS  Google Scholar 

  21. Rahman, S. N. & Conger, J. D. Glomerular and tubular factors in urine flow rates of acute renal failure patients. Am. J. Kidney Dis. 23, 788–793 (1994).

    Article  CAS  Google Scholar 

  22. Lewis, J. et al. Atrial natriuretic factor in oliguric acute renal failure. Am. J. Kidney Dis. 36, 767–774 (2000).

    Article  CAS  Google Scholar 

  23. Swärd, K., Valsson, F., Odencrants, P., Samuelsson, O. & Rickstein, S. E. Recombinant human atrial natriuretic peptide in ischemic acute renal failure: A randomized placebo-controlled trial. Crit. Care Med. 32, 1310–1315 (2004).

    Article  Google Scholar 

  24. Mentzer, R. M. Jr et al. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery: the NAPA Trial. J. Am. Coll. Cardiol. 49, 716–726 (2007).

    Article  CAS  Google Scholar 

  25. Murray, P. Brain natriuretic peptide therapy to prevent acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 51, 5–9 (2008).

    Article  Google Scholar 

  26. Pan, S. et al. Biodesign of a renal-protective peptide based on alternative splicing of B-type natriuretic peptide. Proc. Natl Acad. Sci. USA 1006, 11282–11287 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrier, R. Early intervention in acute kidney injury. Nat Rev Nephrol 6, 56–59 (2010). https://doi.org/10.1038/nrneph.2009.170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.170

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing