Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fly visual course control: behaviour, algorithms and circuits

Key Points

  • Fly visual behaviour is studied mostly in tethered flying or walking animals under open- or closed-loop conditions. In this way, three behaviours have been described: the optomotor response, the fixation response and the avoidance–landing response.

  • The optomotor response is elicited by rotation of a large-field visual panorama around the fly and consists of turning tendency that is syndirectional with the panorama. The fixation response describes the tendency of flies to keep a single black bar in front of them. In response to a lateral looming stimulus, flies rapidly turn away (the avoidance response). When the looming stimulus is in front of them, they perform a landing response.

  • On the basis of quantitative measurements of the stimulus–response relationships, algorithmic models were developed involving arrays of elementary motion detectors (EMDs) and elementary position detectors (EPDs) that cover the visual space and extract the local direction of motion and presence of an object. After appropriate spatial integration by large-field units, these models can accurately describe the respective behavioural response.

  • In search for the neural circuits, genetic targeting of individual cell types in the optic lobe identified lamina neurons L1 and L2 as the major input neurons for two parallel EMDs, one sensitive to moving brightness increments (ON-channel) and the other sensitive to brightness decrements (OFF-channel). T4 and T5 cells provide the directionally selective output of both EMDs, respectively, synapsing onto large-field tangential cells of the lobula plate, which control the optomotor response.

  • Further circuit elements of the EMD have been anatomically identified using serial sectioning electron microscopy. The function of these neurons is currently being tested in physiological experiments.

  • Blocking both T4 and T5 cells results in a complete loss of direction selectivity but leaves the position system largely intact. Thus, a circuit module representing the EPD must exist that is, at least partially, parallel to the EMD.

Abstract

Understanding how the brain controls behaviour is undisputedly one of the grand goals of neuroscience research, and the pursuit of this goal has a long tradition in insect neuroscience. However, appropriate techniques were lacking for a long time. Recent advances in genetic and recording techniques now allow the participation of identified neurons in the execution of specific behaviours to be interrogated. By focusing on fly visual course control, I highlight what has been learned about the neuronal circuit modules that control visual guidance in Drosophila melanogaster through the use of these techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the fly's nervous system.
Figure 2: Visually driven behaviours and their algorithmic control circuits.
Figure 3: Cellular constituents of the optomotor response.
Figure 4: Neural control circuits underlying the fixation, optomotor and avoidance responses.

Similar content being viewed by others

References

  1. Strausfeld, N. J. Atlas of an Insect Brain (Springer, 1976).

    Book  Google Scholar 

  2. Geiger, G. & Nässel, D. R. Visual orientation behaviour of flies after selective laser beam ablation of interneurons. Nature 293, 398–399 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Hausen, K. & Wehrhahn, C. Microsurgical lesion of horizontal cells changes optomotor yaw response in the blowfly Calliphora erythocephala. Proc. R. Soc. Lond. B 219, 211–216 (1983).

    Article  Google Scholar 

  4. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  5. Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  PubMed  Google Scholar 

  6. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nature Neurosci. 12, 229–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking modulates speed sensitivity in Drosophila motion vision. Curr. Biol. 20, 1470–1475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013). Using two-photon calcium imaging in tethered walking and flying D. melanogaster , the authors demonstrate that ring neurons of the central complex represent visual features in a retinotopic arrangement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hardie, R. C. & Raghu, P. Visual transduction in Drosophila. Nature 413, 186–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Braitenberg, V. Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    Article  CAS  PubMed  Google Scholar 

  13. Kirschfeld, K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp. Brain Res. 3, 248–270 (in German) (1967).

    Article  CAS  PubMed  Google Scholar 

  14. Salcedo, E. et al. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J. Neurosci. 19, 10716–10726 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Morante, J. & Desplan, C. The color-vision circuit in the medulla of Drosophila. Curr. Biol. 18, 553–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karuppudurai, T. et al. A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81, 603–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menne, D. & Spatz, H. C. Color vision in Drosophila melanogaster. J. Comp. Physiol. A 114, 301–312 (1977).

    Article  Google Scholar 

  18. Schnaitmann, C., Garbers, C., Wachtler, T. & Tanimoto, H. Color discrimination with broadband photoreceptors. Curr. Biol. 23, 2375–2382 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in Drosophila. Proc. Natl Acad. Sci. USA 105, 4910–4915 (2008).

    Article  PubMed  Google Scholar 

  20. Wernet, M. F. et al. Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22, 12–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Weir, P. T. & Dickinson, M. H. Flying Drosophila orient to sky polarization. Curr. Biol. 22, 21–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Meinertzhagen, I. A. & O'Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Hardie, R. C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704–706 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Laughlin, S. B., Howard, J. & Blakeslee, B. Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc. R. Soc. Lond. B 231, 437–467 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Zheng, L. et al. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I. dynamics. PLoS ONE 4, e4307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cajal, S. R. & Sanchez, D. Contribucion al Conocimiento de los Centros Nerviosos de los Insectos (in Spanish) (Madrid Imprenta de Hijos de Nicholas Moja, 1915).

    Book  Google Scholar 

  27. Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).

    Article  Google Scholar 

  28. Takemura, S. Y., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takemura, S. Y. et al. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21, 2077–2084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maisak, M. S. et al. A directional tuning map of Drosophila elementary motion detectors. Nature 500, 212–216 (2013). The first recordings from T4 and T5 cells, describing their selectivity for ON and OFF motion and directional tuning to the four cardinal directions.

    Article  CAS  PubMed  Google Scholar 

  31. Meier, M. et al. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24, 385–392 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Strother, J. A., Nern, A. & Reiser, M. B. Direct observation of ON and OFF pathways in the Drosophila visual system. Curr. Biol. 24, 976–983 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Mu, L., Ito, K., Bacon, J. P. & Strausfeld, N. J. Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes. J. Neurosci. 32, 6061–6071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strausfeld, N. J. & Bassemir, U. K. Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala. Cell Tissue Res. 240, 617–640 (1985).

    Article  Google Scholar 

  35. Strausfeld, N. J. & Seyan, H. S. Convergence of visual, haltere and prosternal inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res. 240, 601–615 (1985).

    Article  Google Scholar 

  36. Gronenberg, W., Milde, J. J. & Strausfeld, N. J. Oculomotor control in calliphorid flies: organization of descending neurons to neck motor-neurons responding to visual-stimuli. J. Comp. Neurol. 361, 267–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Van Hateren, J. H. & Schilstra, C. Blowfly flight and optic flow. II. Head movements during flight. J. Exp. Biol. 202, 1491–1500 (1999).

    Google Scholar 

  38. Blondeau, J. & Heisenberg, M. The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wildtype and the mutant optomotor blind H31. J. Comp. Physiol. 145, 321–329 (1982).

    Article  Google Scholar 

  39. Hengstenberg, R. Mechanosensory control of compensatory head roll during flight in the blowfly Calliphora erythrocephala Meig. J. Comp. Physiol. A 163, 151–165 (1988).

    Article  Google Scholar 

  40. Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. 11b, 513–524 (in German) (1956).

    Article  Google Scholar 

  41. Reichardt, W. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. A 161, 533–547 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in the rabbit's retina. J. Physiol. 178, 477–504 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Mronz, M. & Lehmann, F. O. The free-flight response of Drosophila to motion of the visual environment. J. Exp. Biol. 211, 2026–2045 (2008).

    Article  PubMed  Google Scholar 

  46. Strauss, R., Schuster, S. & Goetz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 1281–1296 (1997).

    CAS  PubMed  Google Scholar 

  47. Koenderink, J. J. & van Doorn, A. J. Facts on optic flow. Biol. Cybern. 56, 247–254 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Tammero, L. F. & Dickinson, M. H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).

    PubMed  Google Scholar 

  49. Tammero, L. F., Frye, M. A. & Dickinson, M. H. Spatial organization of visuomotor reflexes in Drosophila. J. Exp. Biol. 207, 113–122 (2004).

    Article  PubMed  Google Scholar 

  50. Duistermars, B. J., Chow, D. M., Condro, M. & Frye, M. A. The spatial, temporal and contrast properties of expansion and rotation flight optomotor response in Drosophila. J. Exp. Biol. 210, 3218–3227 (2007).

    Article  PubMed  Google Scholar 

  51. Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looing targets by executing rapid visually directed banked turns. Science 344, 172–177 (2014). This study demonstrates the incredible manoeuvrability of D. melanogaster , as revealed by high-speed video and sophisticated online visual stimulation in free flight.

    Article  CAS  PubMed  Google Scholar 

  52. Card, G. & Dickinson, M. H. Visually mediated motor planning on the escape response of Drosophila. Curr. Biol. 18, 1300–1307 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Braitenberg, V. & Taddei Ferretti, C. Landing reaction of Musca domestica induced by visual stimuli. Naturwissenschaften 6, 155 (1966).

    Article  Google Scholar 

  54. Wehrhahn, C., Hausen, K. & Zanker, J. M. Is the landing response of the housefly (Musca) driven by motion of a flow field? Biol. Cybern. 41, 91–99 (1981).

    Article  Google Scholar 

  55. Wagner, H. Flow-field variables trigger landing in flies. Nature 297, 147–148 (1982).

    Article  Google Scholar 

  56. Borst, A. Time course of the houseflies' landing response. Biol. Cybern. 54, 379–383 (1986).

    Article  Google Scholar 

  57. Borst, A. & Bahde, S. Spatio-temporal integration of motion: a simple strategy for safe landing in flies. Naturwissenschaften 75, 265–267 (1988).

    Article  Google Scholar 

  58. Borst, A. & Bahde, S. What kind of movement detector is triggering the landing response of the housefly? Biol. Cybern. 55, 59–69 (1986).

    Article  Google Scholar 

  59. Van Breugel, F. & Dickinson, M. H. The visual control of landing and obstacle avoidance in the fruit fly Drosophila melanogaster. J. Exp. Biol. 215, 1783–1798 (2012).

    Article  PubMed  Google Scholar 

  60. Reichardt, W. & Wenking, H. Optical detection and fixation of objects in fixed flying flies. Naturwissenschaften 56, 424 (1969).

    Article  CAS  PubMed  Google Scholar 

  61. Poggio, T. & Reichardt, W. A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185–203 (1973).

    Article  CAS  PubMed  Google Scholar 

  62. Goetz, K. G. Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J. Exp. Biol. 128, 35–46 (1987).

    Google Scholar 

  63. Bahl, A., Ammer, G., Schilling, T. & Borst, A. Object tracking in motion-blind flies. Nature Neurosci. 16, 730–738 (2013). This paper describes the genetic isolation of an independent position system.

    Article  CAS  PubMed  Google Scholar 

  64. Pick, B. Visual flicker induces orientation behavior in the fly Musca. Z. Naturforsch. 29C, 3120–3312 (1974).

  65. Aptekar, J. W., Shoemaker, P. A. & Frye, M. A. Figure tracking by flies is supported by parallel visual streams. Curr. Biol. 22, 482–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Fox, J. L., Aptekar, J. W., Zolotova, N. M., Shoemaker, P. A. & Frye, M. A. Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses. J. Exp. Biol. 217, 558–569 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Maimon, G., Straw, A. D. & Dickinson, M. H. A simple vision-based algorithm for decision making in flying Drosophila. Curr. Biol. 18, 464–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Buelthoff, H., Goetz, K. G. & Herre, M. Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster. J. Comp. Physiol. 148, 471–481 (1982).

    Article  Google Scholar 

  69. Greenspan, R. J. & Ferveur, J.-F. Courtship in Drosophila. Annu. Rev. Genet. 34, 205–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45, 143–156 (1982).

    Article  Google Scholar 

  71. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46, 67–79 (1982).

    Article  Google Scholar 

  72. Hengstenberg, R. Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. A 149, 179–193 (1982).

    Article  Google Scholar 

  73. Hengstenberg, R., Hausen, K. & Hengstenberg, B. The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erytrocephala. J. Comp. Physiol. A 149, 163–177 (1982).

    Article  Google Scholar 

  74. Scott, E. K., Raabe, T. & Luo, L. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454, 470–481 (2002).

    Article  PubMed  Google Scholar 

  75. Raghu, S. V., Joesch, M., Borst, A. & Reiff, D. F. Synaptic organization of lobula plate tangential cells in Drosophila: GABA-receptors and chemical release sites. J. Comp. Neurol. 502, 598–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Joesch, M., Plett, J., Borst, A. & Reiff, D. F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Schnell, B. et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Hausen, K., Wolburg-Buchholz, K. & Ribi, W. A. The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208, 371–387 (1980).

    Article  CAS  PubMed  Google Scholar 

  79. Hengstenberg, R., Buelthoff, H. & Hengstenberg, B. in Functional Neuroanatomy (ed. Strausfeld, N. J.) 183–205 (Springer, 1983).

    Book  Google Scholar 

  80. Hopp, E., Borst, A. & Haag, J. Subcellular mapping of dendritic activity in optic flow processing neurons. J. Comp. Physiol. A 200, 359–370 (2014).

    Article  Google Scholar 

  81. Heisenberg, M., Wonneberger, R. & Wolf, R. optomotor-blindH31: a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. A 124, 287–296 (1978).

    Article  Google Scholar 

  82. Haikala, V., Joesch, M., Borst, A. & Mauss, A. Optogenetic control of fly optomotor responses. J. Neurosci. 33, 13927–13934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schnell, B., Weir, P. T., Roth, E., Fairhall, A. L. & Dickinson, M. H. Cellular mechanisms for integral feedback in visually guided behavior. Proc. Natl Acad. Sci. USA 111, 5700–5705 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Egelhaaf, M. & Borst, A. Transient and steady-state response properties of movement detectors. J. Opt. Soc. Am. A 6, 116–127 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Egelhaaf, M., Borst, A. & Reichardt, W. Computational structure of a biological motion detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A 6, 1070–1087 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. Single, S. & Borst, A. Dendritic integration and its role in computing image velocity. Science 281, 1848–1850 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. Adaptive rescaling maximizes information transmission. Neuron 26, 695–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Reisenman, C., Haag, J. & Borst, A. Adaptation of response transients in fly motion vision. I: Experiments. Vision Res. 43, 1291–1307 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Borst, A., Reisenman, C. & Haag, J. Adaptation of response transients in fly motion vision. II: Model studies. Vision Res. 43, 1309–1322 (2003).

    Article  PubMed  Google Scholar 

  90. Haag, J., Denk, W. & Borst, A. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc. Natl Acad. Sci. USA 101, 16333–16338 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Borst, A., Flanagin, V. & Sompolinsky, H. Adaptation without parameter change: dynamic gain control in motion detection. Proc. Natl Acad. Sci. USA 102, 6172–6176 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Borst, A. Drosophila's view on insect vision. Curr. Biol. 19, R36–R47 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Venken, K. J. T., Simpson, J. H. & Bellen, H. J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230 (2011). A comprehensive overview of genetic techniques available in D. melanogaster to target and manipulate individual neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bausenwein, B., Dittrich, A. P. M. & Fischbach, K. F. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 267, 17–28 (1992).

    Article  CAS  PubMed  Google Scholar 

  95. Buchner, E., Buchner, S. & Bülthoff, I. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A 155, 471–483 (1984).

    Article  Google Scholar 

  96. Bausenwein, B. & Fischbach, K. F. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270, 25–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Rister, J. et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010). The discovery of parallel ON and OFF pathways in D. melanogaster motion vision.

    Article  CAS  PubMed  Google Scholar 

  99. Schnell, B., Raghu, S. V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198, 389–395 (2012).

    Article  Google Scholar 

  100. Reiff, D. F., Plett, J., Mank, M., Griesbeck, O. & Borst, A. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nature Neurosci. 13, 973–978 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computational structure of the motion detector in Drosophila. Neuron 70, 1165–1177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eichner, H., Joesch, M., Schnell, B., Reiff, D. F. & Borst, A. Internal structure of the fly elementary motion detector. Neuron 70, 1155–1164 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Joesch, M., Weber, F., Eichner, H. & Borst, A. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33, 902–905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takemura, S. Y. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013). This study reveals the connectivity within the ON motion pathway, with Mi1 and Tm3 cells providing input to T4 cell dendrites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shinomiya, K. et al. Candidate neural substrates of Off-edge motion detection in Drosophila. Curr. Biol. 24, 1062–1070 (2014). This paper reveals the connectivity within the OFF motion pathway, with Tm1, Tm2, Tm4 and Tm9 cells providing input to T5 cell dendrites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Silies, M. et al. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79, 111–127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Torre, V. & Poggio, T. A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. B 202, 409–416 (1978).

    Article  Google Scholar 

  108. Hausselt, S. E., Euler, T., Detwiler, P. B. & Denk, W. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biol. 5, e185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mauss, A., Meier, M., Serbe, E. & Borst, A. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34, 2254–2263 (2014). The first application of optogenetics for studying the connectivity and pharmacology of synaptic transmission in the D. melanogaster visual system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Borst, A. Fly visual interneurons responsive to image expansion. Zool. Jb. Physiol. 95, 305–313 (1991).

    Google Scholar 

  111. DeVries, S. E. J. & Clandinin, T. R. Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr. Biol. 22, 353–362 (2012).

    Article  CAS  Google Scholar 

  112. Hatsopoulos, N., Gabbiani, F. & Laurent, G. Elementary computation of object approach by a wide-field neuron. Science 270, 1000–1003 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Egelhaaf, M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol. Cybern. 52, 195–209 (1985).

    Article  Google Scholar 

  114. Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila. Nature Neurosci. 13, 393–399 (2010). The first whole-cell patch recording of large-field motion-sensitive cells during tethered flight, demonstrating their enhanced gain when flies are flying.

    Article  CAS  PubMed  Google Scholar 

  115. Jung, S. N., Borst, A. & Haag, J. Flight activity alters velocity tuning of fly motion-sensitive neurons. J. Neurosci. 31, 9231–9237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Longden, K. D. & Krapp, H. G. State-dependent performance of optic-flow processing interneurons. J. Neurophysiol. 102, 3606–3618 (2009).

    Article  PubMed  Google Scholar 

  117. Suver, M. P., Mamiya, A. & Dickinson, M. H. Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Curr. Biol. 22, 2294–2302 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Mayer, M., Vogtmann, K., Bausenwein, B., Wolf, R. & Heisenberg, M. Flight control during ‚free yaw turns' in Drosophila melanogaster. J. Comp. Physiol. A 163, 389–399 (1988).

    Article  Google Scholar 

  119. Nalbach, G. & Hengstenberg, R. The halteres of the blowfly Calliphora. II. Three-dimensional organization of compensatory reactions to real and simulated rotations. J. Comp. Physiol. A 175, 695–708 (1994).

    Article  Google Scholar 

  120. Chan, W. P., Prete, F. & Dickinson, M. H. Visual input to the efferent control system of a fly's “gyroscope”. Science 280, 289–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Sherman, A. & Dickinson, M. H. A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J. Exp. Biol. 206, 295–302 (2003).

    Article  PubMed  Google Scholar 

  122. Bender, J. A. & Dickinson, M. H. A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster. J. Exp. Biol. 209, 4597–4606 (2009).

    Article  Google Scholar 

  123. Chow, D. M. & Frye, M. A. Context-dependent olfactory enhancement of optomotor flight control in Drosophila. J. Exp. Biol. 211, 2478–2485 (2008).

    Article  PubMed  Google Scholar 

  124. Haag, J., Wertz, A. & Borst, A. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J. Neurosci. 27, 1992–2000 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wertz, A., Borst, A. & Haag, J. Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J. Neurosci. 28, 3131–3140 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huston, S. J. & Krapp, H. G. Visuomotor transformation in the fly gaze stabilization system. PLoS Biol. 6, e173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wertz, A., Gaub, B., Plett, J., Haag, J. & Borst, A. Robust coding of ego-motion in descending neurons of the fly. J. Neurosci. 29, 14993–15000 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huston, S. J. & Krapp, H. G. Nonlinear integration of visual and haltere inputs in fly neck motor neurons. J. Neurosci. 29, 13097–13105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Haag, J., Wertz, A. & Borst, A. Central gating of fly optomotor response. Proc. Natl Acad. Sci. USA 107, 20104–20109 (2010).

    Article  PubMed  Google Scholar 

  130. Hanesch, U., Fischbach, K. F. & Heisenberg, M. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989).

    Article  Google Scholar 

  131. Weir, P. T., Schnell, B. & Dickinson, M. H. Central complex neurons exhibit behaviorally gated responses to visual motion in Dros. J. Neurophysiol. 111, 62–71 (2014).

    Article  PubMed  Google Scholar 

  132. Breedlove, S. M., Watson, N. V. & Rosenzweig, M. R. Biological Psychology (Sinauer, 2007).

    Google Scholar 

  133. Cuntz, H. et al. Preserving neural function under extreme scaling. PLoS ONE 8, e71540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Freifeld, L., Clark, D. A., Schnitzer, M. J., Horowitz, M. A. & Clandinin, T. R. GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 78, 1075–1089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tuthill, J. C., Nern, A., Holtz, S. L., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79, 128–140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T. Schilling provided unpublished data for figure 2. I thank her, A. Bahl, J. Haag and A. Leonhardt for helpful discussions and comments on the manuscript, C. Thalhammer for secretarial help and R. Schorner for art work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Borst.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Genetically encoded calcium indicators

Protein constructs, which are based on green fluorescent protein and a calcium-binding moiety, engineered to change their fluorescence upon increased calcium levels.

Closed-loop

A behavioural paradigm in which the animal's response is fed back onto the stimulus, such as in virtual reality.

Open-loop

A behavioural paradigm in which the animal's response is measured as a function of a stimulus completely defined by the experimenter, with no influence of the behavioural response on the stimulus.

Driver lines

Fly lines, each carrying a cell-specific enhancer in conjunction with a transcription factor such as Gal4 or LexA: when a fly line is crossed with a reporter line, a certain gene is expressed in the respective neurons.

Direction selectivity

A response property of a neuron describing its selectivity for the direction of visual motion.

Null direction

A certain direction of motion, usually opposite to the preferred direction, which inhibits a neuron maximally or excites it minimally.

Preferred direction

A certain direction of motion that excites a neuron maximally.

Halteres

Small, club-shaped appendices of the thorax modified from the hind wings. They beat in anti-phase to the wings when the fly is flying and function as gyroscopes, informing the insect about rotation of the body during flight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borst, A. Fly visual course control: behaviour, algorithms and circuits. Nat Rev Neurosci 15, 590–599 (2014). https://doi.org/10.1038/nrn3799

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing