Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein palmitoylation in neuronal development and synaptic plasticity

Key Points

  • Post-translational modification, including protein phosphorylation and lipid modification, provides proteins with additional function and regulatory control beyond genomic information, allowing cells to maintain homeostasis and respond to extracellular signals.

  • Protein palmitoylation —the common lipid modification with the lipid palmitate — regulates protein trafficking and function, as well as signalling. Palmitoylation modifies numerous proteins including synaptic scaffolding, signalling and cytoskeletal proteins to target them to specialized membrane microdomains.

  • Palmitoylation is a unique post-translational modification in that it is reversible and dynamically regulated by specific extracellular signals. The reversible nature of protein palmitoylation allows proteins to shuttle between intracellular compartments. For example, protein palmitoylation regulates the Golgi–plasma membrane shuttling of the small GTPase HRAS and the G protein subunit Gα.

  • Proteome analyses have identified numerous new palmitoyl substrates in the brain, such as brain-specific CDC42 and NMDA (N-methyl-D-aspartate) receptor subunits.

  • The finely tuned protein targeting by palmitoylation aids neuronal development and synaptic plasticity. However, the molecular mechanisms of protein palmitoylation have long been elusive.

  • The large family of DHHC-type (Asp-His-His-Cys) palmitoyl-acyltransferases, conserved from plants to mammals, has recently been identified. Systematic screening methods have revealed various enzyme–substrate pairs.

  • The DHHC-type palmitoylating enzymes are classified into several subfamilies and differently regulated in polarized neurons. For example, DHHC3 stably localizes at the Golgi apparatus, whereas dendritically localized DHHC2 moves to the postsynaptic density in an activity-sensitive manner and mediates palmitoylation of postsynaptic density protein 95 (PSD95). This increases the accumulation of synaptic PSD95 and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors upon activity blockade, contributing to homeostatic plasticity.

  • The next step in this field of research is to identify the family of enzymes that mediate removal of protein palmitate — the depalmitoylating enzymes. It will also be important to analyse transgenic animals that have mutations in DHHC-type palmitoylating enzymes.

Abstract

Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes — a large DHHC (Asp-His-His-Cys) protein family — and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Roles of palmitoylation in neurons.
Figure 2: Palmitoylation–depalmitoylation cycles mediate inter-compartment shuttling of proteins.
Figure 3: DHHC-type palmitoylating enzyme family and identified enzyme–substrate pairs.
Figure 4: Differential regulation of DHHC enzymes in neurons.

Similar content being viewed by others

References

  1. Johnson, D. R., Bhatnagar, R. S., Knoll, L. J. & Gordon, J. I. Genetic and biochemical studies of protein N-myristoylation. Annu. Rev. Biochem. 63, 869–914 (1994).

    CAS  PubMed  Google Scholar 

  2. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    CAS  PubMed  Google Scholar 

  3. El-Husseini Ael, D. & Bredt, D. S. Protein palmitoylation: a regulator of neuronal development and function. Nature Rev. Neurosci. 3, 791–802 (2002).

    Google Scholar 

  4. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nature Rev. Mol. Cell Biol. 8, 74–84 (2007).

    CAS  Google Scholar 

  5. Resh, M. D. Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006, re14 (2006).

    PubMed  Google Scholar 

  6. Pepinsky, R. B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    CAS  PubMed  Google Scholar 

  7. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005). This study showed that constitutive palmitate cycling on HRAS and NRAS regulates their shuttling between the plasma membrane and the Golgi complex, contributing to spatiotemporal segregation of Ras signalling.

    CAS  PubMed  Google Scholar 

  8. Tsutsumi, R. et al. Identification of G protein alpha subunit-palmitoylating enzyme. Mol. Cell. Biol. 29, 435–447 (2009).

    CAS  PubMed  Google Scholar 

  9. Chisari, M., Saini, D. K., Kalyanaraman, V. & Gautam, N. Shuttling of G protein subunits between the plasma membrane and intracellular membranes. J. Biol. Chem. 282, 24092–24098 (2007).

    CAS  PubMed  Google Scholar 

  10. Rocks, O., Peyker, A. & Bastiaens, P. I. Spatio-temporal segregation of Ras signals: one ship, three anchors, many harbors. Curr. Opin. Cell Biol. 18, 351–357 (2006).

    CAS  PubMed  Google Scholar 

  11. El-Husseini, A. E. et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 148, 159–172 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Topinka, J. R. & Bredt, D. S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel, Kv1.4. Neuron 20, 125–134 (1998).

    CAS  PubMed  Google Scholar 

  13. El-Husseini Ael, D. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108, 849–863 (2002). This study showed that PSD95 palmitoylation dynamically cycles in neurons and regulates AMPAR-mediated synaptic transmission.

    Google Scholar 

  14. Kanaani, J., Patterson, G., Schaufele, F., Lippincott-Schwartz, J. & Baekkeskov, S. A palmitoylation cycle dynamically regulates partitioning of the GABA-synthesizing enzyme GAD65 between ER-Golgi and post-Golgi membranes. J. Cell Sci. 121, 437–449 (2008).

    CAS  PubMed  Google Scholar 

  15. Kang, R. et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456, 904–909 (2008). The authors applied the ABE method to global purification and identification of palmitoylated proteins from neuronal samples, and characterized a novel palmitoyl isoform of CDC42.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartels, D. J., Mitchell, D. A., Dong, X. & Deschenes, R. J. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 6775–6787 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukata, M., Fukata, Y., Adesnik, H., Nicoll, R. A. & Bredt, D. S. Identification of PSD-95 palmitoylating enzymes. Neuron 44, 987–996 (2004). This study isolated 23 mammalian DHHC proteins and established a systematic screening method to identify specific PSD95 palmitoylating enzymes.

    CAS  PubMed  Google Scholar 

  18. Lobo, S., Greentree, W. K., Linder, M. E. & Deschenes, R. J. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277, 41268–41273 (2002).

    CAS  PubMed  Google Scholar 

  19. Roth, A. F., Feng, Y., Chen, L. & Davis, N. G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol. 159, 23–28 (2002). Using genetic screening in yeast, references 16, 18 and 19 identified proteins containing a DHHC CRD as palmitoylating enzymes.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Drisdel, R. C., Alexander, J. K., Sayeed, A. & Green, W. N. Assays of protein palmitoylation. Methods 40, 127–134 (2006).

    CAS  PubMed  Google Scholar 

  21. Drisdel, R. C. & Green, W. N. Labeling and quantifying sites of protein palmitoylation. Biotechniques 36, 276–285 (2004).

    CAS  PubMed  Google Scholar 

  22. Wan, J., Roth, A. F., Bailey, A. O. & Davis, N. G. Palmitoylated proteins: purification and identification. Nature Protoc. 2, 1573–1584 (2007).

    CAS  Google Scholar 

  23. Roth, A. F. et al. Global analysis of protein palmitoylation in yeast. Cell 125, 1003–1013 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods 6, 135–138 (2009). Using the palmitic acid analogue 17-octadecynoic acid and click chemistry, the paper reported a non-radioactive metabolic labelling method to globally purify palmitoylated proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ponimaskin, E. et al. Fibroblast growth factor-regulated palmitoylation of the neural cell adhesion molecule determines neuronal morphogenesis. J. Neurosci. 28, 8897–8907 (2008). This study showed that DHHC7 palmitoylates NCAMs downstream of FGF signalling and plays a crucial part in FGF-mediated neurite outgrowth.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Berthiaume, L. & Resh, M. D. Biochemical characterization of a palmitoyl acyltransferase activity that palmitoylates myristoylated proteins. J. Biol. Chem. 270, 22399–22405 (1995).

    CAS  PubMed  Google Scholar 

  27. Dunphy, J. T., Greentree, W. K., Manahan, C. L. & Linder, M. E. G-protein palmitoyltransferase activity is enriched in plasma membranes. J. Biol. Chem. 271, 7154–7159 (1996).

    CAS  PubMed  Google Scholar 

  28. Bannan, B. A. et al. The Drosophila protein palmitoylome: characterizing palmitoyl-thioesterases and DHHC palmitoyl-transferases. Fly (Austin) 2, 198–214 (2008).

    Google Scholar 

  29. Hemsley, P. A. & Grierson, C. S. Multiple roles for protein palmitoylation in plants. Trends Plant Sci. 13, 295–302 (2008).

    CAS  PubMed  Google Scholar 

  30. Ohno, Y., Kihara, A., Sano, T. & Igarashi, Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim. Biophys. Acta 1761, 474–483 (2006).

    CAS  PubMed  Google Scholar 

  31. Keller, C. A. et al. The γ2 subunit of GABAA receptors is a substrate for palmitoylation by GODZ. J. Neurosci. 24, 5881–5891 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, K. et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44, 977–986 (2004).

    CAS  PubMed  Google Scholar 

  33. Swarthout, J. T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J. Biol. Chem. 280, 31141–31148 (2005). Taking advantage of the in vitro PAT assay, the authors showed that DHHC9 together with the Golgi-localized cofactor GCP16 palmitoylates HRAS and NRAS.

    CAS  PubMed  Google Scholar 

  34. Fukata, Y., Iwanaga, T. & Fukata, M. Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 40, 177–182 (2006).

    CAS  PubMed  Google Scholar 

  35. Hou, H., John Peter, A. T., Meiringer, C., Subramanian, K. & Ungermann, C. Analysis of DHHC acyltransferases implies overlapping substrate specificity and a two-step reaction mechanism. Traffic 10, 1061–1073 (2009).

    CAS  PubMed  Google Scholar 

  36. Fernandez-Hernando, C. et al. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J. Cell Biol. 174, 369–377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang, C. et al. GODZ-mediated palmitoylation of GABAA receptors is required for normal assembly and function of GABAergic inhibitory synapses. J. Neurosci. 26, 12758–12768 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Greaves, J., Salaun, C., Fukata, Y., Fukata, M. & Chamberlain, L. H. Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein. J. Biol. Chem. 283, 25014–25026 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, K. et al. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J. 23, 2605–2615 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Greaves, J. et al. The hydrophobic cysteine-rich domain of SNAP25 couples with downstream residues to mediate membrane interactions and recognition by DHHC palmitoyl transferases. Mol. Biol. Cell 20, 1845–1854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yanai, A. et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nature Neurosci. 9, 824–831 (2006).

    CAS  PubMed  Google Scholar 

  42. Duncan, J. A. & Gilman, A. G. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J. Biol. Chem. 273, 15830–15837 (1998).

    CAS  PubMed  Google Scholar 

  43. Yeh, D. C., Duncan, J. A., Yamashita, S. & Michel, T. Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca2+–calmodulin. J. Biol. Chem. 274, 33148–33154 (1999).

    CAS  PubMed  Google Scholar 

  44. Duncan, J. A. & Gilman, A. G. Characterization of Saccharomyces cerevisiae acyl-protein thioesterase 1, the enzyme responsible for G protein alpha subunit deacylation in vivo. J. Biol. Chem. 277, 31740–31752 (2002).

    CAS  PubMed  Google Scholar 

  45. Siegel, G. et al. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biol. 11, 705–716 (2009). By screening synaptically enriched microRNAs that affect spine morphology, the authors identified miR-138, the target of which is mRNA encoding depalmitoylating enzyme APT1.

    CAS  PubMed  Google Scholar 

  46. Camp, L. A. & Hofmann, S. L. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J. Biol. Chem. 268, 22566–22574 (1993).

    CAS  PubMed  Google Scholar 

  47. Verkruyse, L. A. & Hofmann, S. L. Lysosomal targeting of palmitoyl-protein thioesterase. J. Biol. Chem. 271, 15831–15866 (1996).

    CAS  PubMed  Google Scholar 

  48. Heinonen, O. et al. Expression of palmitoyl protein thioesterase in neurons. Mol. Genet. Metab. 69, 123–129 (2000).

    CAS  PubMed  Google Scholar 

  49. Kim, S. J. et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J. Clin. Invest. 118, 3075–3086 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vesa, J. et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376, 584–587 (1995).

    CAS  PubMed  Google Scholar 

  51. Gupta, P. et al. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc. Natl Acad. Sci. USA 98, 13566–13571 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Degtyarev, M. Y., Spiegel, A. M. & Jones, T. L. Increased palmitoylation of the Gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. J. Biol. Chem. 268, 23769–23772 (1993).

    CAS  PubMed  Google Scholar 

  53. Mumby, S. M., Kleuss, C. & Gilman, A. G. Receptor regulation of G-protein palmitoylation. Proc. Natl Acad. Sci. USA 91, 2800–2804 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wedegaertner, P. B. & Bourne, H. R. Activation and depalmitoylation of Gs alpha. Cell 77, 1063–1070 (1994).

    CAS  PubMed  Google Scholar 

  55. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Google Scholar 

  56. Kaibuchi, K., Kuroda, S. & Amano, M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem. 68, 459–486 (1999).

    CAS  PubMed  Google Scholar 

  57. Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Noritake, J. et al. Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J. Cell Biol. 186, 147–160 (2009). This paper was the first to document differential regulation of the large DHHC protein family members and showed that activity-sensitive DHHC2 translocation enhances synaptic PSD95 palmitoylation and mediates AMPAR homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohyama, T. et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J. Cell Biol. 179, 1481–1496 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stowers, R. S. & Isacoff, E. Y. Drosophila huntingtin-interacting protein 14 is a presynaptic protein required for photoreceptor synaptic transmission and expression of the palmitoylated proteins synaptosome-associated protein 25 and cysteine string protein. J. Neurosci. 27, 12874–12883 (2007). References 59 and 60 showed that DHHC17 has an essential role in synaptic transmission by palmitoylating SNAP25 and CSP.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niethammer, P. et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J. Cell Biol. 157, 521–532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ren, Q. & Bennett, V. Palmitoylation of neurofascin at a site in the membrane-spanning domain highly conserved among the L1 family of cell adhesion molecules. J. Neurochem. 70, 1839–1849 (1998).

    CAS  PubMed  Google Scholar 

  63. Herincs, Z. et al. DCC association with lipid rafts is required for netrin-1-mediated axon guidance. J. Cell Sci. 118, 1687–1692 (2005).

    CAS  PubMed  Google Scholar 

  64. Yang, X. et al. Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J. Cell Biol. 167, 1231–1240 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chauvin, S., Poulain, F. E., Ozon, S. & Sobel, A. Palmitoylation of stathmin family proteins domain A controls Golgi versus mitochondrial subcellular targeting. Biol. Cell 100, 577–589 (2008).

    CAS  PubMed  Google Scholar 

  66. Morii, H., Shiraishi-Yamaguchi, Y. & Mori, N. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J. Neurobiol. 66, 1101–1114 (2006).

    CAS  PubMed  Google Scholar 

  67. Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    CAS  PubMed  Google Scholar 

  68. Saffell, J. L., Williams, E. J., Mason, I. J., Walsh, F. S. & Doherty, P. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18, 231–242 (1997).

    CAS  PubMed  Google Scholar 

  69. Sharma, C., Yang, X. H. & Hemler, M. E. DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol. Biol. Cell 19, 3415–3425 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Takemoto-Kimura, S. et al. Regulation of dendritogenesis via a lipid-raft-associated Ca2+/calmodulin-dependent protein kinase CLICK-III/CaMKIγ. Neuron 54, 755–770 (2007).

    CAS  PubMed  Google Scholar 

  71. Sorra, K. E. & Harris, K. M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501–511 (2000).

    CAS  PubMed  Google Scholar 

  72. Kutzleb, C. et al. Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J. Cell Biol. 143, 795–813 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Arstikaitis, P. et al. Paralemmin-1, a modulator of filopodia induction is required for spine maturation. Mol. Biol. Cell 19, 2026–2038 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nature Rev. Neurosci. 5, 952–962 (2004).

    CAS  Google Scholar 

  75. Nicoll, R. A., Tomita, S. & Bredt, D. S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006).

    CAS  PubMed  Google Scholar 

  76. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    CAS  PubMed  Google Scholar 

  77. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    CAS  PubMed  Google Scholar 

  78. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    CAS  PubMed  Google Scholar 

  79. Ehrlich, I. & Malinow, R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916–927 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayashi, T., Rumbaugh, G. & Huganir, R. L. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 47, 709–723 (2005).

    CAS  PubMed  Google Scholar 

  81. Lin, D. T. et al. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nature Neurosci. 12, 879–887 (2009).

    CAS  PubMed  Google Scholar 

  82. Rathenberg, J., Kittler, J. T. & Moss, S. J. Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell. Neurosci. 26, 251–257 (2004).

    CAS  PubMed  Google Scholar 

  83. Chow, E. W., Watson, M., Young, D. A. & Bassett, A. S. Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr. Res. 87, 270–278 (2006).

    PubMed  PubMed Central  Google Scholar 

  84. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nature Genet. 40, 880–885 (2008).

    CAS  PubMed  Google Scholar 

  85. Chen, W. Y. et al. Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum. Mol. Genet. 13, 2991–2995 (2004).

    CAS  PubMed  Google Scholar 

  86. Mukai, J. et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nature Genet. 36, 725–731 (2004).

    CAS  PubMed  Google Scholar 

  87. Mukai, J. et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nature Neurosci. 11, 1302–1310 (2008). The authors showed that DHHC8 deficiency in the schizophrenia-related 22q11.2 microdeletion contributes substantially to a deficit in dendritic spine formation and dendritic growth in the relevant mouse model.

    CAS  PubMed  Google Scholar 

  88. Singaraja, R. R. et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum. Mol. Genet. 11, 2815–2828 (2002).

    CAS  PubMed  Google Scholar 

  89. Mansouri, M. R. et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur. J. Hum. Genet. 13, 970–977 (2005).

    CAS  PubMed  Google Scholar 

  90. Raymond, F. L. et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am. J. Hum. Genet. 80, 982–987 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dimitrov, A. et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353–1356 (2008).

    CAS  PubMed  Google Scholar 

  92. Nizak, C. et al. Recombinant antibodies to the small GTPase Rab6 as conformation sensors. Science 300, 984–987 (2003).

    CAS  PubMed  Google Scholar 

  93. Jennings, B. C. et al. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J. Lipid Res. 50, 233–242 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Saitoh, R. et al. Viral envelope protein gp64 transgenic mouse facilitates the generation of monoclonal antibodies against exogenous membrane proteins displayed on baculovirus. J. Immunol. Methods 322, 104–117 (2007).

    CAS  PubMed  Google Scholar 

  95. Masuda, K. et al. A combinatorial G protein-coupled receptor reconstitution system on budded baculovirus. Evidence for Gα and Gαo coupling to a human leukotriene B4 receptor. J. Biol. Chem. 278, 24552–24562 (2003).

    CAS  PubMed  Google Scholar 

  96. Ren, J. et al. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng. Des. Sel. 21, 639–644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, X. B., Wu, L. Y., Wang, Y. C. & Deng, N. Y. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng. Des. Sel. 22, 707–712 (2009).

    CAS  PubMed  Google Scholar 

  98. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989).

    CAS  PubMed  Google Scholar 

  99. Adamson, P., Marshall, C. J., Hall, A. & Tilbrook, P. A. Post-translational modifications of p21rho proteins. J. Biol. Chem. 267, 20033–20038 (1992).

    CAS  PubMed  Google Scholar 

  100. Linder, M. E. et al. Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc. Natl Acad. Sci. USA 90, 3675–3679 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wedegaertner, P. B., Chu, D. H., Wilson, P. T., Levis, M. J. & Bourne, H. R. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J. Biol. Chem. 268, 25001–25008 (1993).

    CAS  PubMed  Google Scholar 

  102. Tu, Y., Popov, S., Slaughter, C. & Ross, E. M. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. J. Biol. Chem. 274, 38260–38267 (1999).

    CAS  PubMed  Google Scholar 

  103. Tu, Y., Wang, J. & Ross, E. M. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein alpha subunits. Science 278, 1132–1135 (1997).

    CAS  PubMed  Google Scholar 

  104. Stoffel, R. H., Inglese, J., Macrae, A. D., Lefkowitz, R. J. & Premont, R. T. Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry 37, 16053–16059 (1998).

    CAS  PubMed  Google Scholar 

  105. Drenan, R. M. et al. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J. Cell Biol. 169, 623–633 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Koegl, M., Zlatkine, P., Ley, S. C., Courtneidge, S. A. & Magee, A. I. Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem. J. 303, 749–753 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C. & Lublin, D. M. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J. Cell Biol. 126, 353–363 (1994).

    CAS  PubMed  Google Scholar 

  108. Skene, J. H. & Virag, I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J. Cell Biol. 108, 613–624 (1989).

    CAS  PubMed  Google Scholar 

  109. Liu, J., Garcia-Cardena, G. & Sessa, W. C. Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry 34, 12333–12340 (1995).

    CAS  PubMed  Google Scholar 

  110. Christgau, S. et al. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J. Cell Biol. 118, 309–320 (1992).

    CAS  PubMed  Google Scholar 

  111. Jung, G. et al. Molecular determinants of activation and membrane targeting of phosphoinositol 4-kinase IIb. Biochem. J. 409, 501–509 (2008).

    CAS  PubMed  Google Scholar 

  112. Di Paolo, G. et al. Targeting of SCG10 to the area of the Golgi complex is mediated by its NH2-terminal region. J. Biol. Chem. 272, 5175–5182 (1997).

    CAS  PubMed  Google Scholar 

  113. Gory-Faure, S. et al. STOP-like protein 21 is a novel member of the STOP family, revealing a Golgi localization of STOP proteins. J. Biol. Chem. 281, 28387–28396 (2006).

    CAS  PubMed  Google Scholar 

  114. Shmueli, A. et al. Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity. EMBO J. 29, 107–119 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. El-Husseini, A. E. et al. Ion channel clustering by membrane-associated guanylate kinases. Differential regulation by N-terminal lipid and metal binding motifs. J. Biol. Chem. 275, 23904–23910 (2000).

    CAS  PubMed  Google Scholar 

  116. DeSouza, S., Fu, J., States, B. A. & Ziff, E. B. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Matsuda, K., Matsuda, S., Gladding, C. M. & Yuzaki, M. Characterization of the δ2 glutamate receptor-binding protein delphilin: splicing variants with differential palmitoylation and an additional PDZ domain. J. Biol. Chem. 281, 25577–25587 (2006).

    CAS  PubMed  Google Scholar 

  118. Suzuki, H., Nishikawa, K., Hiroaki, Y. & Fujiyoshi, Y. Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim. Biophys. Acta 1778, 1181–1189 (2008).

    CAS  PubMed  Google Scholar 

  119. Chien, A. J., Carr, K. M., Shirokov, R. E., Rios, E. & Hosey, M. M. Identification of palmitoylation sites within the L-type calcium channel β2a subunit and effects on channel function. J. Biol. Chem. 271, 26465–26468 (1996).

    CAS  PubMed  Google Scholar 

  120. Tian, L. et al. Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proc. Natl Acad. Sci. USA 105, 21006–21011 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gubitosi-Klug, R. A., Mancuso, D. J. & Gross, R. W. The human Kv1.1 channel is palmitoylated, modulating voltage sensing: identification of a palmitoylation consensus sequence. Proc. Natl Acad. Sci. USA 102, 5964–5968 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hayashi, T., Thomas, G. M. & Huganir, R. L. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 64, 213–226 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. O'Brien, P. J. & Zatz, M. Acylation of bovine rhodopsin by [3H]palmitic acid. J. Biol. Chem. 259, 5054–5057 (1984).

    CAS  PubMed  Google Scholar 

  124. O'Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J. & Bouvier, M. Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J. Biol. Chem. 264, 7564–7569 (1989).

    CAS  PubMed  Google Scholar 

  125. Papoucheva, E., Dumuis, A., Sebben, M., Richter, D. W. & Ponimaskin, E. G. The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi protein. J. Biol. Chem. 279, 3280–3291 (2004).

    CAS  PubMed  Google Scholar 

  126. Yang, X. et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell 13, 767–781 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schneider, A. et al. Palmitoylation is a sorting determinant for transport to the myelin membrane. J. Cell Sci. 118, 2415–2423 (2005).

    CAS  PubMed  Google Scholar 

  128. Vetrivel, K. S. et al. Alzheimer disease Aβ production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J. Biol. Chem. 284, 3793–3803 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Cheng, H. et al. S-palmitoylation of γ-secretase subunits nicastrin and APH-1. J. Biol. Chem. 284, 1373–1384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chakrabandhu, K. et al. Palmitoylation is required for efficient Fas cell death signaling. EMBO J. 26, 209–220 (2007).

    CAS  PubMed  Google Scholar 

  131. Barker, P. A., Barbee, G., Misko, T. P. & Shooter, E. M. The low affinity neurotrophin receptor, p75LNTR, is palmitoylated by thioester formation through cysteine 279. J. Biol. Chem. 269, 30645–30650 (1994).

    CAS  PubMed  Google Scholar 

  132. Hess, D. T., Slater, T. M., Wilson, M. C. & Skene, J. H. The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J. Neurosci. 12, 4634–4641 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Heindel, U., Schmidt, M. F. & Veit, M. Palmitoylation sites and processing of synaptotagmin I, the putative calcium sensor for neurosecretion. FEBS Lett. 544, 57–62 (2003).

    CAS  PubMed  Google Scholar 

  134. Chamberlain, L. H. & Burgoyne, R. D. The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting. Biochem. J. 335, 205–209 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. McCormick, P. J. et al. Palmitoylation controls recycling in lysosomal sorting and trafficking. Traffic 9, 1984–1997 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Schweizer, A., Rohrer, J. & Kornfeld, S. Determination of the structural requirements for palmitoylation of p63. J. Biol. Chem. 270, 9638–9644 (1995).

    CAS  PubMed  Google Scholar 

  137. Lallemand-Breitenbach, V. et al. CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule dynamics. J. Biol. Chem. 279, 41168–41178 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Noritake, R. Tsutsumi, T. Iwanaga and N. Yokoi in our laboratory for preparing the manuscript, and D. S. Bredt (Eli Lilly and Company) and M. Nishijima (National Institute of Health Sciences and PRESTO, JST) for encouragement. We apologize to researchers whose work could not be cited owing to space constraints. The original work by the authors was supported by grants from Human Frontier Science Program (CDA0015-07 to Y.F. and RGY0059-06 to M.F.), MEXT (21680029 to Y.F. and 20670005, 20022043 and 20054022 to M.F.) and PRESTO (Y.F. and M.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Fukata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Huntington's disease

infantile neuronal ceroid lipofuscinosis

schizophrenia

FURTHER INFORMATION

Masaki Fukata's homepage

CSS-palm 2.0

CKSAAP-palm

Glossary

Myristoylation

The co-translational attachment of 14-carbon myristic acid to an amino-terminal glycine residue through a stable amide linkage, catalysed by N-myristoyltransferase.

Prenylation

The post-translational attachment of a prenyl group — 15-carbon farnesyl (farnesylation) or 20-carbon geranylgeranyl group (geranylgeranylation) — to a specific cysteine residue in the carboxy-terminal motif CaaX (in which C is a prenyl cysteine and a and X represent aliphatic and any residues, respectively).

Lipid raft

A submicrodomain of the plasma membrane that is enriched in sphingolipids and cholesterol, and is thought to serve as a signalling platform.

Proteomics

Large-scale comprehensive description of protein expression and protein–protein interactions, carried out by mass spectrometry and accompanied by a search of protein databases.

Multidimensional protein identification technology

(MudPIT). A protein identification method based on improved peptide separation of complex samples using multidimensional liquid chromatography coupled to tandem mass spectrometry.

Copper (I)-catalysed azide–alkyne cycloaddition (click) chemistry

Chemical reactions that use bio-orthogonal moieties to label a molecule of interest, involving a copper-catalysed triazole formation from an azide and an alkyne.

Electroretinogram

A recording of the electrical responses of the light-sensitive cells in the eye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukata, Y., Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 11, 161–175 (2010). https://doi.org/10.1038/nrn2788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing