Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The molecular basis of the host response to lipopolysaccharide

Abstract

Lipopolysaccharide (LPS), which is produced by Gram-negative bacteria, is a powerful activator of innate immune responses. LPS binds to the proteins Toll-like receptor 4 (TLR4) and MD2 to activate pro-inflammatory signalling pathways. The TLR4–MD2 receptor complex is crucial for the host recognition of Gram-negative bacterial infection, and pathogens have devised many strategies to evade or manipulate TLR4–MD2 activity. The TLR4–MD2 signalling pathway is therefore potentially an important therapeutic target. This Progress article focuses on recent exciting data that have revealed the structural basis of TLR4–MD2 recognition of LPS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipid A structures.
Figure 2: MD2 and Toll-like receptor crystal structures.
Figure 3: Docking model of MAL and TRAM binding at the Toll-like receptor 4 homodimer interface.

Similar content being viewed by others

References

  1. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  Google Scholar 

  2. Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K. & Raetz, C. R. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490–19498 (1991).

    CAS  PubMed  Google Scholar 

  3. Walsh, C. et al. Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J. Immunol. 181, 1245–1254 (2008).

    Article  CAS  Google Scholar 

  4. Lohmann, K. L., Vandenplas, M., Barton, M. H. & Moore, J. N. Lipopolysaccharide from Rhodobacter sphaeroides is an agonist in equine cells. J. Endotoxin Res. 9, 33–37 (2003).

    Article  CAS  Google Scholar 

  5. Christ, W. J. et al. E5531, a pure endotoxin antagonist of high potency. Science 268, 80–83 (1995).

    Article  CAS  Google Scholar 

  6. Figueiredo, M. D., Moore, J. N., Vandenplas, M. L., Sun, W. C. & Murray, T. F. Effects of the second-generation synthetic lipid A analogue E5564 on responses to endotoxin in [corrected] equine whole blood and monocytes. Am. J. Vet. Res. 69, 796–803 (2008).

    Article  CAS  Google Scholar 

  7. Stover, A. G. et al. Structure-activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem. 279, 4440–4449 (2004).

    Article  Google Scholar 

  8. Teghanemt, A., Zhang, D., Levis, E. N., Weiss, J. P. & Gioannini, T. L. Molecular basis of reduced potency of underacylated endotoxins. J. Immunol. 175, 4669–4676 (2005).

    Article  CAS  Google Scholar 

  9. Mata-Haro, V. et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628–1632 (2007).

    Article  CAS  Google Scholar 

  10. Darveau, R. P. et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect. Immun. 72, 5041–5051 (2004).

    Article  CAS  Google Scholar 

  11. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  Google Scholar 

  12. Schumann, R. R. et al. Structure and function of lipopolysaccharide binding protein. Science 249, 1429–1431 (1990).

    Article  CAS  Google Scholar 

  13. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  14. Gioannini, T. L. et al. Isolation of an endotoxin–MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc. Natl Acad. Sci. USA 101, 4186–4191 (2004).

    Article  CAS  Google Scholar 

  15. Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4, 407–414 (1996).

    Article  CAS  Google Scholar 

  16. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  17. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  18. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  Google Scholar 

  19. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  20. Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genet. 25, 187–191 (2000).

    Article  CAS  Google Scholar 

  21. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  22. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunol. 3, 667–672 (2002).

    Article  CAS  Google Scholar 

  23. Gay, N. J. & Gangloff, M. Structure of Toll-like receptors. Handb. Exp. Pharmacol. 183, 181–200 (2008).

    Article  CAS  Google Scholar 

  24. Gay, N. J., Gangloff, M. & Weber, A. N. Toll-like receptors as molecular switches. Nature Rev. Immunol. 6, 693–698 (2006).

    Article  CAS  Google Scholar 

  25. Inohara, N. & Nunez, G. ML — a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem. Sci. 27, 219–221 (2002).

    Article  CAS  Google Scholar 

  26. Gangloff, M. & Gay, N. J. MD-2: the Toll 'gatekeeper' in endotoxin signalling. Trends Biochem. Sci. 29, 294–300 (2004).

    Article  CAS  Google Scholar 

  27. Gruber, A., Mancek, M., Wagner, H., Kirschning, C. J. & Jerala, R. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition. J. Biol. Chem. 279, 28475–28482 (2004).

    Article  CAS  Google Scholar 

  28. Ohto, U., Fukase, K., Miyake, K. & Satow, Y. Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316, 1632–1634 (2007).

    Article  CAS  Google Scholar 

  29. Kim, H. M. et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906–917 (2007).

    Article  CAS  Google Scholar 

  30. Jin, M. S. & Lee, J. O. Structures of the Toll-like receptor family and its ligand complexes. Immunity 29, 182–191 (2008).

    Article  CAS  Google Scholar 

  31. Liu, L. et al. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320, 379–381 (2008).

    Article  CAS  Google Scholar 

  32. Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  Google Scholar 

  33. Nu, A. R. et al. Essential roles of hydrophobic residues in both MD-2 and Toll-like receptor 4 in activation by endotoxin. J. Biol. Chem. 284, 15052–15060 (2009).

    Article  Google Scholar 

  34. Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4–MD2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  Google Scholar 

  35. Rallabhandi, P. et al. Analysis of TLR4 polymorphic variants: new insights into TLR4/MD-2/CD14 stoichiometry, structure, and signaling. J. Immunol. 177, 322–332 (2006).

    Article  CAS  Google Scholar 

  36. Gay, N. J. & Gangloff, M. Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem. 76, 141–165 (2007).

    Article  CAS  Google Scholar 

  37. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  Google Scholar 

  38. Trompette, A. et al. Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457, 585–588 (2009).

    Article  CAS  Google Scholar 

  39. Saitoh, S. et al. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16, 961–969 (2004).

    Article  CAS  Google Scholar 

  40. Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch. Intern. Med. 162, 1028–1032 (2002).

    Article  CAS  Google Scholar 

  41. O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  42. Nunez Miguel, R. et al. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE 2, e788 (2007).

    Article  Google Scholar 

  43. Toshchakov, V. Y. & Vogel, S. N. Cell-penetrating TIR BB loop decoy peptides a novel class of TLR signaling inhibitors and a tool to study topology of TIR–TIR interactions. Expert Opin. Biol. Ther. 7, 1035–1050 (2007).

    Article  CAS  Google Scholar 

  44. Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nature Immunol. 7, 148–155 (2006).

    Article  CAS  Google Scholar 

  45. Kagan, J. C. & Medzhitov, R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125, 943–955 (2006).

    Article  CAS  Google Scholar 

  46. Rowe, D. C. et al. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc. Natl Acad. Sci. USA 103, 6299–6304 (2006).

    Article  CAS  Google Scholar 

  47. McGettrick, A. F. et al. Trif-related adapter molecule is phosphorylated by PKCɛ during Toll-like receptor 4 signaling. Proc. Natl Acad. Sci. USA 103, 9196–9201 (2006).

    Article  CAS  Google Scholar 

  48. Tanimura, N., Saitoh, S., Matsumoto, F., Akashi-Takamura, S. & Miyake, K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res. Commun. 368, 94–99 (2008).

    Article  CAS  Google Scholar 

  49. Miller, S. I., Ernst, R. K. & Bader, M. W. LPS, TLR4 and infectious disease diversity. Nature Rev. Microbiol. 3, 36–46 (2005).

    Article  CAS  Google Scholar 

  50. Montminy, S. W. et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature Immunol. 7, 1066–1073 (2006).

    Article  CAS  Google Scholar 

  51. Munford, R. S. Sensing Gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect. Immun. 76, 454–465 (2008).

    Article  CAS  Google Scholar 

  52. Thomas, G. L. et al. Immunomodulatory effects of Pseudomonas aeruginosa quorum sensing small molecule probes on mammalian macrophages. Mol. Biosyst. 2, 132–137 (2006).

    Article  CAS  Google Scholar 

  53. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Med. 15, 410–416 (2009).

    Article  CAS  Google Scholar 

  54. Melendez, A. J. et al. Inhibition of FcɛRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nature Med. 13, 1375–1381 (2007).

    Article  CAS  Google Scholar 

  55. Newman, R. M., Salunkhe, P., Godzik, A. & Reed, J. C. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect. Immun. 74, 594–601 (2006).

    Article  CAS  Google Scholar 

  56. Low, L. Y., Mukasa, T., Reed, J. C. & Pascual, J. Characterization of a TIR-like protein from Paracoccus denitrificans. Biochem. Biophys. Res. Commun. 356, 481–486 (2007).

    Article  CAS  Google Scholar 

  57. Cirl, C. et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature Med. 14, 399–406 (2008).

    Article  CAS  Google Scholar 

  58. Radhakrishnan, G. K., Yu, Q., Harms, J. S. & Splitter, G. A. Brucella TIR domain-containing protein mimics properties of the toll-like receptor adaptor protein TIRAP. J. Biol. Chem. 284, 9892–9898 (2009).

    Article  CAS  Google Scholar 

  59. Lee, H. K., Brown, S. J., Rosen, H. & Tobias, P. S. Application of β-lactamase enzyme complementation to the high-throughput screening of Toll-like receptor signaling inhibitors. Mol. Pharmacol. 72, 868–875 (2007).

    Article  CAS  Google Scholar 

  60. Toshchakov, V. Y., Fenton, M. J. & Vogel, S. N. Cutting edge: differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J. Immunol. 178, 2655–2660 (2007).

    Article  CAS  Google Scholar 

  61. Kawamoto, T., Ii, M., Kitazaki, T., Iizawa, Y. & Kimura, H. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur. J. Pharmacol. 584, 40–48 (2008).

    Article  CAS  Google Scholar 

  62. O'Brien, A. D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  Google Scholar 

  63. Mullarkey, M. et al. Inhibition of endotoxin response by E5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J. Pharmacol. Exp. Ther. 304, 1093–1102 (2003).

    Article  CAS  Google Scholar 

  64. Tidswell, M. et al. Phase 2 trial of Eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Crit. Care Med. 5 August 2009 [epub ahead of print].

  65. Roger, T. et al. Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proc. Natl Acad. Sci. USA 106, 2348–2352 (2009).

    Article  CAS  Google Scholar 

  66. Neubig, R. R., Spedding, M., Kenakin, T. & Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 55, 597–606 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Medical Research Council, the Biotechnology and Biological Sciences Research Council, the Wellcome Trust and the Horserace Betting Levy Board for funding our work. We apologise to those authors whose work we were unable to cite owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare E. Bryant.

Supplementary information

Supplementary information S1 (figure)

The structures of lipid A from different bacterial species and the structures of synthetic lipid A analogues. (PDF 175 kb)

Related links

Related links

DATABASES

Entrez Genome

mouse mammary tumour virus

Entrez Genome Project

Brucella melitensis

Chlamydia pneumoniae

Escherichia coli

Paracoccus denitrificans

Porphyromonas gingivalis

Pseudomonas aeruginosa

Rhodobacter sphaeroides

Salmonella enterica subsp. enterica serovar Enteritidis

Streptococcus pneumoniae

Yersinia pestis

Protein Data Bank

2E59

2Z65

2Z7X

3CIY

3FXI

FURTHER INFORMATION

Clare E. Bryant's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, C., Spring, D., Gangloff, M. et al. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol 8, 8–14 (2010). https://doi.org/10.1038/nrmicro2266

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing