Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential roles of S100A10 in Toll-like receptor signaling and immunity to infection

Abstract

Toll-like receptors (TLRs) are key pattern recognition receptors that mediate innate immune responses to infection. However, uncontrolled TLR activation can lead to severe inflammatory disorders such as septic shock. The molecular mechanisms through which TLR responses are regulated are not fully understood. Here, we demonstrate an essential function of S100A10 in TLR signaling. S100A10 was constitutively expressed in macrophages, but was significantly downregulated upon TLR activation. S100A10-deficient macrophages were hyperresponsive to TLR stimulation, and S100A10-deficient mice were more sensitive to endotoxin-induced lethal shock and Escherichia coli-induced abdominal sepsis. Mechanistically, S100A10 regulated macrophage inflammatory responses by interfering with the appropriate recruitment and activation of the receptor-proximal signaling components and eventually inhibited TLR-triggered downstream signaling. These findings expand our understanding of TLR signaling and establish S100A10 as an essential negative regulator of TLR function and a potential therapeutic target for treating inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  2. Marshak-Rothstein, A. & Rifkin, I. R. Immunologically active autoantigens: the role of toll-like receptors in the development of chronic inflammatory disease. Annu. Rev. Immunol. 25, 419–441 (2007).

    Article  CAS  Google Scholar 

  3. Liew, F. Y., Xu, D., Brint, E. K. & O’Neill, L. A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  4. Qian, C. & Cao, X. Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann. NY Acad. Sci. 1283, 67–74 (2013).

    Article  CAS  Google Scholar 

  5. Gerke, V. & Weber, K. The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J. 4, 2917–2920 (1985).

    Article  CAS  Google Scholar 

  6. Donato, R. et al. Functions of S100 proteins. Curr. Mol. Med. 13, 24–57 (2013).

    Article  CAS  Google Scholar 

  7. Hessner, F. et al. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10. Sci. Rep. 6, 22649 (2016).

    Article  CAS  Google Scholar 

  8. Svenningsson, P. et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311, 77–80 (2006).

    Article  CAS  Google Scholar 

  9. Camilleri, M. et al. Alterations in expression of p11 and SERT in mucosal biopsy specimens of patients with irritable bowel syndrome. Gastroenterology 132, 17–25 (2007).

    Article  CAS  Google Scholar 

  10. Green, H. et al. Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 114, 2735–2740 (2017).

    Article  CAS  Google Scholar 

  11. Guo, J. et al. Probable involvement of p11 with interferon alpha induced depression. Sci. Rep. 6, 17029 (2016).

    Article  CAS  Google Scholar 

  12. O’Connell, P. A., Surette, A. P., Liwski, R. S., Svenningsson, P. & Waisman, D. M. S100A10 regulates plasminogen-dependent macrophage invasion. Blood 116, 1136–1146 (2010).

    Article  Google Scholar 

  13. He, K. L. et al. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J. Biol. Chem. 283, 19192–19200 (2008).

    Article  CAS  Google Scholar 

  14. Rescher, U. & Gerke, V. S100A10/p11: family, friends and functions. Pflug. Arch. 455, 575–582 (2008).

    Article  CAS  Google Scholar 

  15. Sayeed, S. et al. S100A10 is required for the organization of actin stress fibers and promotion of cell spreading. Mol. Cell. Biochem. 374, 105–111 (2013).

    Article  CAS  Google Scholar 

  16. Holzinger, D., Tenbrock, K. & Roth, J. Alarmins of the S100-family in juvenile autoimmune and auto-inflammatory diseases. Front. Immunol. 10, 182 (2019).

    Article  CAS  Google Scholar 

  17. Zhang, L., Fogg, D. K. & Waisman, D. M. RNA interference-mediated silencing of the S100A10 gene attenuates plasmin generation and invasiveness of Colo 222 colorectal cancer cells. J. Biol. Chem. 279, 2053–2062 (2004).

    Article  CAS  Google Scholar 

  18. Nakahira, K. et al. Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J. Exp. Med. 203, 2377–2389 (2006).

    Article  CAS  Google Scholar 

  19. Kondo, T., Kawai, T. & Akira, S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 33, 449–458 (2012).

    Article  CAS  Google Scholar 

  20. Brown, J., Wang, H., Hajishengallis, G. N. & Martin, M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 90, 417–427 (2011).

    Article  CAS  Google Scholar 

  21. Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434, 243–249 (2005).

    Article  CAS  Google Scholar 

  22. Negishi, H. et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA 102, 15989–15994 (2005).

    Article  CAS  Google Scholar 

  23. Palsson-McDermott, E. M. et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat. Immunol. 10, 579–586 (2009).

    Article  CAS  Google Scholar 

  24. Brint, E. K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol. 5, 373–379 (2004).

    Article  CAS  Google Scholar 

  25. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  Google Scholar 

  26. Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901 (1999).

    Article  CAS  Google Scholar 

  27. Foell, D. et al. Proinflammatory S100A12 can activate human monocytes via Toll-like receptor 4. Am. J. Respir. Crit. Care Med. 187, 1324–1334 (2013).

    Article  CAS  Google Scholar 

  28. Österreicher, C. H. et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc. Natl. Acad. Sci. USA 108, 308–313 (2011).

    Article  Google Scholar 

  29. Chen, L. et al. S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J. Hepatol. 62, 156–164 (2015).

    Article  CAS  Google Scholar 

  30. Safronova, A. et al. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat. Immunol. 20, 64–72 (2019).

    Article  CAS  Google Scholar 

  31. Swisher, J. F., Burton, N., Bacot, S. M., Vogel, S. N. & Feldman, G. M. Annexin A2 tetramer activates human and murine macrophages through TLR4. Blood 115, 549–558 (2010).

    Article  CAS  Google Scholar 

  32. Ajuebor, M. N. et al. Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J. Immunol. 162, 1685–1691 (1999).

    CAS  PubMed  Google Scholar 

  33. Miles, L. A. & Parmer, R. J. S100A10: a complex inflammatory role. Blood 116, 1022–1024 (2010).

    Article  CAS  Google Scholar 

  34. Xu, S. et al. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway. Nat. Immunol. 13, 551–559 (2012).

    Article  CAS  Google Scholar 

  35. Wang, Z. et al. TIPE2 protein serves as a negative regulator of phagocytosis and oxidative burst during infection. Proc. Natl. Acad. Sci. USA 109, 15413–15418 (2012).

    Article  CAS  Google Scholar 

  36. Lou, Y. et al. Enhanced atherosclerosis in TIPE2-deficient mice is associated with increased macrophage responses to oxidized low-density lipoprotein. J. Immunol. 191, 4849–4857 (2013).

    Article  CAS  Google Scholar 

  37. Wang, J. et al. Ku70 senses HTLV-1 DNA and modulates HTLV-1 replication. J. Immunol. 199, 2475–2482 (2017).

    Article  CAS  Google Scholar 

  38. Huai, W. et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat. Commun. 5, 4738 (2014).

    Article  CAS  Google Scholar 

  39. Sun, H. et al. Exacerbated experimental colitis in TNFAIP8-deficient mice. J. Immunol. 194, 5736–5742 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 81871309) and the Program for Ph.D. Starting Research Funding from Xinxiang Medical University (Grant No. 505248). We thank Drs. Bo Yang, Yun Zhang, Qianqian Zheng, Liangwei Duan, Chunlei Guo, Jie Wang, Zhiguo Niu, and Hui Liu for reagents and/or valuable advice. We are also grateful to Drs. Wei Zhao (Shandong University) and Peihui Wang (Shandong University) for providing plasmids and to Dr. Youhai Chen (University of Pennsylvania) for critical reading and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and Y.L. conceived the study and wrote the manuscript; Y.L. and M.H. performed most of the experiments and analyzed the data. H.L. performed some of the in vivo experiments. Y.N. performed the histopathology study on the lung samples. J.G. and Y.L. generated and supplied S100a10−/− mice. W.Z. provided expertise and advice. H.W. oversaw the project.

Corresponding author

Correspondence to Hui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Y., Han, M., Liu, H. et al. Essential roles of S100A10 in Toll-like receptor signaling and immunity to infection. Cell Mol Immunol 17, 1053–1062 (2020). https://doi.org/10.1038/s41423-019-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0278-1

Keywords

This article is cited by

Search

Quick links