Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond

Abstract

In 1964, Vincent Allfrey and colleagues reported the identification of histone acetylation and with deep insight proposed a regulatory role for this protein modification in transcription regulation. Subsequently, histone acetyltransferases (HATs), histone deacetylases (HDACs) and acetyl-Lys-binding proteins were identified as transcription regulators, thereby providing compelling evidence for his daring hypothesis. During the past 15 years, reversible protein acetylation and its modifying enzymes have been implicated in many cellular functions beyond transcription regulation. Here, we review the progress accomplished during the past 50 years and discuss the future of protein acetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Publications on protein acetylation.
Figure 2: Vincent Allfrey (1921–2002): acetylation pioneer.
Figure 3: Milestones in protein acetylation.
Figure 4: Histone acetylation, chromatin condensation and gene expression.

References

  1. Fischer, E. H., Graves, D. J., Crittenden, E. R. & Krebs, E. G. Structure of the site phosphorylated in the phosphorylase b to a reaction. J. Biol. Chem. 234, 1698–1704 (1959).

    CAS  PubMed  Google Scholar 

  2. Phillips, D. M. The presence of acetyl groups in histones. Biochem. J. 87, 258–263 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bloch, K. & Borek, E. Biological acetylation of natural amino acids. J. Biol. Chem. 164, 483 (1946).

    CAS  PubMed  Google Scholar 

  4. Lipmann, F. Development of the acetylation problem, a personal account. Science 120, 855–865 (1954).

    CAS  PubMed  Google Scholar 

  5. Lipmann, F. & Kaplan, N. O. Report on a coenzyme for acetylation. Fed. Proc. 5, 145 (1946).

    CAS  PubMed  Google Scholar 

  6. Lipmann, F. et al. Coenzyme for acetylation, a pantothenic acid derivative. J. Biol. Chem. 167, 869 (1947).

    CAS  PubMed  Google Scholar 

  7. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc. Natl Acad. Sci. USA 51, 786–794 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Riggs, M. G., Whittaker, R. G., Neumann, J. R. & Ingram, V. M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268, 462–464 (1977).

    CAS  PubMed  Google Scholar 

  9. Candido, E. P., Reeves, R. & Davie, J. R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105–113 (1978).

    CAS  PubMed  Google Scholar 

  10. Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc. Natl Acad. Sci. USA 75, 2239–2243 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. L'Hernault, S. W. & Rosenbaum, J. L. Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly. J. Cell Biol. 97, 258–263 (1983).

    CAS  PubMed  Google Scholar 

  12. Piperno, G. & Fuller, M. T. Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101, 2085–2094 (1985).

    CAS  PubMed  Google Scholar 

  13. LeDizet, M. & Piperno, G. Identification of an acetylation site of Chlamydomonas α-tubulin. Proc. Natl Acad. Sci. USA 84, 5720–5724 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).

    CAS  PubMed  Google Scholar 

  15. Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnson, L. M., Kayne, P. S., Kahn, E. S. & Grunstein, M. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 87, 6286–6290 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Megee, P. C., Morgan, B. A., Mittman, B. A. & Smith, M. M. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247, 841–845 (1990).

    CAS  PubMed  Google Scholar 

  18. Park, E. C. & Szostak, J. W. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol. Cell. Biol. 10, 4932–4934 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aparicio, O. M., Billington, B. L. & Gottschling, D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287 (1991).

    CAS  PubMed  Google Scholar 

  20. Turner, B. M., Birley, A. J. & Lavender, J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375–384 (1992).

    CAS  PubMed  Google Scholar 

  21. Turner, B. M. & Fellows, G. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139 (1989).

    CAS  PubMed  Google Scholar 

  22. Kleff, S., Andrulis, E. D., Anderson, C. W. & Sternglanz, R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270, 24674–24677 (1995).

    CAS  PubMed  Google Scholar 

  23. Brownell, J. E. & Allis, C. D. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl Acad. Sci. USA 92, 6364–6368 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

    CAS  PubMed  Google Scholar 

  25. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  26. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423–430 (1995).

    CAS  PubMed  Google Scholar 

  27. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S. & Beppu, T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268, 22429–22435 (1993).

    CAS  PubMed  Google Scholar 

  28. Vidal, M., Strich, R., Esposito, R. E. & Gaber, R. F. RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11, 6306–6316 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nature Genet. 14, 33–41 (1996).

    CAS  PubMed  Google Scholar 

  30. Reifsnyder, C., Lowell, J., Clarke, A. & Pillus, L. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nature Genet. 14, 42–49 (1996).

    CAS  PubMed  Google Scholar 

  31. Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A. & Lucchesi, J. C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16, 2054–2060 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Neuwald, A. F. & Landsman, D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22, 154–155 (1997).

    CAS  PubMed  Google Scholar 

  33. Smith, E. R. et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl Acad. Sci. USA 95, 3561–3565 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clarke, A. S., Lowell, J. E., Jacobson, S. J. & Pillus, L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol. 19, 2515–2526 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mizzen, C. A. et al. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261–1270 (1996).

    CAS  PubMed  Google Scholar 

  36. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    CAS  PubMed  Google Scholar 

  37. Yamamoto, T. & Horikoshi, M. Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J. Biol. Chem. 272, 30595–30598 (1997).

    CAS  PubMed  Google Scholar 

  38. Marmorstein, R. & Zhou, M. M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6, a018762 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).

    CAS  PubMed  Google Scholar 

  40. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).

    CAS  PubMed  Google Scholar 

  41. Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356 (1997).

    CAS  PubMed  Google Scholar 

  42. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).

    CAS  PubMed  Google Scholar 

  43. Heinzel, T. et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    CAS  PubMed  Google Scholar 

  44. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851–861 (1998).

    CAS  PubMed  Google Scholar 

  46. Lau, O. D. et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589–595 (2000).

    CAS  PubMed  Google Scholar 

  47. Dangond, F. et al. Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem. Biophys. Res. Commun. 242, 648–652 (1998).

    CAS  PubMed  Google Scholar 

  48. Emiliani, S., Fischle, W., Van Lint, C., Al-Abed, Y. & Verdin, E. Characterization of a human RPD3 ortholog, HDAC3. Proc. Natl Acad. Sci. USA 95, 2795–2800 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, W. M., Yao, Y. L., Sun, J. M., Davie, J. R. & Seto, E. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J. Biol. Chem. 272, 28001–28007 (1997).

    CAS  PubMed  Google Scholar 

  50. Zeng, Y., Tang, C. M., Yao, Y. L., Yang, W. M. & Seto, E. Cloning and characterization of the mouse histone deacetylase-2 gene. J. Biol. Chem. 273, 28921–28930 (1998).

    CAS  PubMed  Google Scholar 

  51. Fischle, W. et al. Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J. Biol. Chem. 276, 35826–35835 (2001).

    CAS  PubMed  Google Scholar 

  52. Fischle, W. et al. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J. Biol. Chem. 274, 11713–11720 (1999).

    CAS  PubMed  Google Scholar 

  53. Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl Acad. Sci. USA 96, 4868–4873 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kao, H. Y., Downes, M., Ordentlich, P. & Evans, R. M. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 14, 55–66 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao, L., Cueto, M. A., Asselbergs, F. & Atadja, P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 277, 25748–25755 (2002).

    CAS  PubMed  Google Scholar 

  56. Guardiola, A. R. & Yao, T. P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem. 277, 3350–3356 (2002).

    CAS  PubMed  Google Scholar 

  57. Tong, J. J., Liu, J., Bertos, N. R. & Yang, X. J. Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucleic Acids Res. 30, 1114–1123 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Finnin, M. S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    CAS  PubMed  Google Scholar 

  59. Clements, A. et al. Crystal structure of the histone acetyltransferase domain of the human PCAF transcriptional regulator bound to coenzyme A. EMBO J. 18, 3521–3532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin, Y., Fletcher, C. M., Zhou, J., Allis, C. D. & Wagner, G. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature 400, 86–89 (1999).

    CAS  PubMed  Google Scholar 

  61. Trievel, R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA 96, 8931–8936 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Min, J., Landry, J., Sternglanz, R. & Xu, R. M. Crystal structure of a SIR2 homolog-NAD complex. Cell 105, 269–279 (2001).

    CAS  PubMed  Google Scholar 

  63. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    CAS  PubMed  Google Scholar 

  64. Ott, M. et al. Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr. Biol. 9, 1489–1492 (1999).

    CAS  PubMed  Google Scholar 

  65. Kiernan, R. E. et al. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J. 18, 6106–6118 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, L., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    CAS  Google Scholar 

  67. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Rev. Mol. Cell Biol. 15, 536–550 (2014).

    CAS  Google Scholar 

  68. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    CAS  PubMed  Google Scholar 

  69. Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 19, 6141–6149 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    CAS  PubMed  Google Scholar 

  73. Frye, R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273–279 (1999).

    CAS  PubMed  Google Scholar 

  74. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    CAS  PubMed  Google Scholar 

  75. Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489–498 (2013).

    CAS  PubMed  Google Scholar 

  76. Kouzarides, T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19, 1176–1179 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    CAS  PubMed  Google Scholar 

  78. Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. & Feinberg, A. P. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci. USA 99, 13653–13658 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158, 647–657 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, S. C. et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607–618 (2006).

    CAS  PubMed  Google Scholar 

  81. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    CAS  PubMed  Google Scholar 

  84. Richon, V. M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl Acad. Sci. USA 95, 3003–3007 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M. & Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 241, 126–133 (1998).

    CAS  PubMed  Google Scholar 

  86. Shirakawa, K., Chavez, L., Hakre, S., Calvanese, V. & Verdin, E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol. 21, 277–285 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    CAS  PubMed  Google Scholar 

  88. Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).

    CAS  PubMed  Google Scholar 

  89. Hubbard, B. P. et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216–1219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bowers, E. M. et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem. Biol. 17, 471–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hebert, A. S. et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186–199 (2013).

    CAS  PubMed  Google Scholar 

  95. Rardin, M. J. et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. USA 110, 6601–6606 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Baeza, J. et al. Stoichiometry of site-specific lysine acetylation in an entire proteome. J. Biol. Chem. 289, 21326–21338 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Weinert, B. T. et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10, 716 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Paik, W. K., Pearson, D., Lee, H. W. & Kim, S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 213, 513–522 (1970).

    CAS  PubMed  Google Scholar 

  99. Wagner, G. R. & Payne, R. M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288, 29036–29045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Du, J. et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10, M111.012658 10.1074/mcp.M111.012658(2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shimazu, T. et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214 (2013).

    CAS  PubMed  Google Scholar 

  103. Garcia-Ramirez, M., Rocchini, C. & Ausio, J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270, 17923–17928 (1995).

    CAS  PubMed  Google Scholar 

  104. Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, X. & Hayes, J. J. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol. Cell. Biol. 28, 227–236 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Allis, L. Pilus and P. Cole for discussions during the preparation of this manuscript. Work in the laboratories of E.V. and M.O. is supported by the National Institutes of Health (NIH) and by the Gladstone Institutes. We apologize to colleagues whose work we could not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Verdin.

Ethics declarations

Competing interests

E.V. was a member of the Scientific Advisory Board of SIRTRIS/GSK, a company commercializing sirtuin discoveries, until 30 September 2014. He is also a founder of Acylin, a company commercializing HAT inhibitors. M.O. declares no competing interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

Eric Verdin's homepage

Melanie Ott's homepage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verdin, E., Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16, 258–264 (2015). https://doi.org/10.1038/nrm3931

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing