Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Coordination between RAB GTPase and phosphoinositide regulation and functions

Abstract

Membrane trafficking relies on dynamic changes in membrane identities that are determined by the regulation of distinct RAB GTPases and phosphoinositides. RABs and phosphoinositides both act to spatiotemporally recruit effectors of membrane remodelling, including sequential RAB and phosphoinositide activities. New ideas on coordinated regulation of specific RABs and phosphoinositides, achieved by direct physical and functional interactions between their regulatory enzymes, are emerging as a central mechanism to ensure precision and fidelity of membrane trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common themes between RAB and phosphoinositide localizations, regulation and functions.
Figure 2: Shared themes in cascading RAB and phosphoinositide pathways.
Figure 3: Interrelationships between RABs and phosphoinositides.

Similar content being viewed by others

References

  1. Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M. A. Function and dysfunction of the PI system in membrane trafficking. EMBO J. 27, 2457–2470 (2008).

    Article  CAS  Google Scholar 

  2. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  3. Hutagalung, A. H. & Novick, P. J. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149 (2011).

    Article  CAS  Google Scholar 

  4. Sasaki, T. et al. Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 48, 307–343 (2009).

    Article  CAS  Google Scholar 

  5. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nature Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  Google Scholar 

  6. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  Google Scholar 

  7. Sönnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000).

    Article  Google Scholar 

  8. Barr, F. & Lambright, D. G. Rab GEFs and GAPs. Curr. Opin. Cell Biol. 22, 461–470 (2010).

    Article  CAS  Google Scholar 

  9. Backer, J. M. The regulation and function of class II PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008).

    Article  CAS  Google Scholar 

  10. Simonsen, A. & Tooze, S. A. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J. Cell Biol. 186, 773–782 (2009).

    Article  CAS  Google Scholar 

  11. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  Google Scholar 

  12. Shin, H.-W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 170, 607–618 (2005).

    Article  CAS  Google Scholar 

  13. Rivera-Molina, F. E. & Novick, P. J. A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc. Natl Acad. Sci. USA 106, 14408–14413 (2009).

    Article  CAS  Google Scholar 

  14. Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157, 1005–1015 (2002).

    Article  CAS  Google Scholar 

  15. Nordmann, M. et al. The Mon1–Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20, 1654–1659 (2010).

    Article  CAS  Google Scholar 

  16. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  Google Scholar 

  17. Botelho, R. J., Efe, J. A., Teis, D. & Emr, S. D. Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol. Biol. Cell 19, 4273–4286 (2008).

    Article  CAS  Google Scholar 

  18. Jin, N. et al. VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse. EMBO J. 27, 3221–3234 (2008).

    Article  CAS  Google Scholar 

  19. Chagpar, R. B. et al. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA 107, 5471–5476 (2010).

    Article  CAS  Google Scholar 

  20. Taniguchi, C. M. et al. The phosphoinositide 3-kinase regulatory subunit p85α can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res. 70, 5305–5315 (2010).

    Article  CAS  Google Scholar 

  21. Cao, C., Laporte, J., Backer, J. M., Wandinger-Ness, A. & Stein, M. P. Myotubularin lipid phosphatase binds the hVPS15/hVPS34 lipid kinase complex on endosomes. Traffic 8, 1052–1067 (2007).

    Article  CAS  Google Scholar 

  22. Jean, S., Cox, S., Schmidt, E. J., Robinson, F. L., Kiger A. A. Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling. Mol. Biol. Cell 30 May 2012 (doi:10.1091/mbc.E12-05-0375).

  23. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  Google Scholar 

  24. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  Google Scholar 

  25. Stein, M. P., Feng, Y., Cooper, K. L., Welford, A. M. & Wandinger-Ness, A. Human VPS34 and p150 are Rab7 interacting partners. Traffic 4, 754–771 (2003).

    Article  CAS  Google Scholar 

  26. Hyvola, N. et al. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J. 25, 3750–3761 (2006).

    Article  CAS  Google Scholar 

  27. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase-α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    Article  CAS  Google Scholar 

  28. Mizuno-Yamasaki, E., Medkova, M., Coleman, J. & Novick, P. Phosphatidylinositol 4-phosphate controls both membrane recruitment and a regulatory switch of the Rab, GEF Sec2p. Dev. Cell 18, 828–840 (2010).

    Article  CAS  Google Scholar 

  29. Garcia-Gonzalo, F. R., Bartrons, R., Ventura, F. & Rosa, J. L. Requirement of phosphatidylinositol-4,5- bisphosphate for HERC1-mediated guanine nucleotide release from ARF proteins. FEBS Lett. 579, 343–348 (2005).

    Article  CAS  Google Scholar 

  30. Paris, S. et al. Role of protein–phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem. 272, 22221–22226 (1997).

    Article  CAS  Google Scholar 

  31. Polevoy, G. et al. Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. J. Cell Biol. 187, 847–858 (2009).

    Article  CAS  Google Scholar 

  32. Carlton, J. G. & Cullen, P. J. Coincidence detection in phosphoinositide signaling. Trends Cell Biol. 15, 540–547 (2005).

    Article  CAS  Google Scholar 

  33. Obara, K., Sekito, T., Niimi, K. & Ohsumi, Y. The Atg18–Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980 (2008).

    Article  CAS  Google Scholar 

  34. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    Article  CAS  Google Scholar 

  35. Nielsen, E. et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151, 601–612 (2000).

    Article  CAS  Google Scholar 

  36. Chamberlain, M. D., Berry, T. R., Pastor, M. C. & Anderson, D. H. The p85α subunit of phosphatidylinositol 3′-kinase binds to and stimulates the GTPase activity of Rab proteins. J. Biol. Chem. 279, 48607–48614 (2004).

    Article  CAS  Google Scholar 

  37. Chamberlain, M. D. et al. Disrupted RabGAP function of the p85 subunit of phosphatidylinositol 3-kinase results in cell transformation. J. Biol. Chem. 283, 15861–15868 (2008).

    Article  CAS  Google Scholar 

  38. Hnia, K., Vaccari, I., Bolino, A. & Laporte, J. Myotubularin phosphoinositide phosphatases: cellular functions and disease pathophysiology. Trends Mol. Med. 11 May 2012 (doi:10.1016/j.molmed.2012.04.004).

  39. Yoshimura, S., Gerondopoulos, A., Linford, A., Rigden, D. J. & Barr, F. A. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191, 367–381 (2010).

    Article  CAS  Google Scholar 

  40. Cullen, P. J. Endosomal sorting and signalling: an emerging role for sorting nexins. Nature Rev. Mol. Cell Biol. 9, 574–582 (2008).

    Article  CAS  Google Scholar 

  41. Egami, Y. & Araki, N. Characterization of Rab21-positive tubular endosomes induced by PI3K inhibitors. Exp. Cell Res. 314, 729–737 (2008).

    Article  CAS  Google Scholar 

  42. Allaire, P. D. et al. The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol. Cell 37, 370–382 (2010).

    Article  CAS  Google Scholar 

  43. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  Google Scholar 

  44. Berger, P., Tersar, K., Ballmer-Hofer, K. & Suter, U. The CMT4B disease-causing proteins MTMR2 and MTMR13/SBF2 regulate AKT signalling. J. Cell. Mol. Med. 15, 307–315 (2011).

    Article  CAS  Google Scholar 

  45. Barrowman, J., Bhandari, D., Reinisch, K. & Ferro-Novick, S. TRAPP complexes in membrane traffic: convergence through a common Rab. Nature Rev. Mol. Cell Biol. 11, 759–763 (2010).

    Article  CAS  Google Scholar 

  46. De Renzis, S., Sönnichsen, B. & Zerial, M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biol. 4, 124–133 (2002).

    Article  CAS  Google Scholar 

  47. Maffucci, T. et al. Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J. Cell Biol. 169, 789–799 (2005).

    Article  CAS  Google Scholar 

  48. Sarkes, D. & Rameh, L. E. A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem. J. 428, 375–384 (2010).

    Article  CAS  Google Scholar 

  49. Sato, M., Ueda, Y., Takagi, T. & Umezawa, Y. Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nature Cell Biol. 5, 1016–1022 (2003).

    Article  CAS  Google Scholar 

  50. Watt, S. A. et al. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochem. J. 377, 653–663 (2004).

    Article  CAS  Google Scholar 

  51. Watt, S. A., Kular, G., Fleming, I. N., Downes, C. P. & Lucocq, J. M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase Cδ1. Biochem. J. 363, 657–666 (2002).

    Article  CAS  Google Scholar 

  52. Dove, Stephen, K., Dong, K., Kobayashi, T., Williams, Fay, K. & Michell, Robert, H. Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem. J. 419, 1 (2009).

    Article  CAS  Google Scholar 

  53. Fields, I. C., King, S. M., Shteyn, E., Kang, R. S. & Folsch, H. Phosphatidylinositol 3,4,5-trisphosphate localization in recycling endosomes is necessary for AP-1B-dependent sorting in polarized epithelial cells. Mol. Biol. Cell 21, 95–105 (2010).

    Article  CAS  Google Scholar 

  54. Thapa, N. et al. Phosphoinositide signaling regulates the exocyst complex and polarized integrin trafficking in directionally migrating cells. Dev. Cell 22, 116–130 (2012).

    Article  CAS  Google Scholar 

  55. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685–701 (2008).

    Article  CAS  Google Scholar 

  56. Moreau, K., Ravikumar, B., Puri, C. & Rubinsztein, D. C. Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4,5-bisphosphate and phospholipase D. J. Cell Biol. 196, 483–496 (2012).

    Article  CAS  Google Scholar 

  57. Obara, K., Noda, T., Niimi, K. & Ohsumi, Y. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells 13, 537–547 (2008).

    Article  CAS  Google Scholar 

  58. Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).

    Article  CAS  Google Scholar 

  59. Field, S. J. et al. PtdIns(4,5)P2 functions at the cleavage furrow during cytokinesis. Curr. Biol. 15, 1407–1412 (2005).

    Article  CAS  Google Scholar 

  60. Sagona, A. P. et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nature Cell Biol. 12, 362–371 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steve Jean or Amy A. Kiger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Amy A. Kiger's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jean, S., Kiger, A. Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol 13, 463–470 (2012). https://doi.org/10.1038/nrm3379

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3379

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing