Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stop pulling my strings — what telomeres taught us about the DNA damage response

Key Points

  • Telomeres are essential nucleoprotein structures that protect chromosome ends. In mammals, telomeres are composed of TTAGGG repeats, which are bound by a protein complex termed shelterin.

  • Cell divisions lead to the progressive erosion of telomeric repeats. When telomeres become too short to recruit the shelterin complex, they become dysfunctional, leading to telomere deprotection.

  • Chromosome ends with dysfunctional telomeres are detected as sites of DNA damage, leading to the activation of the DNA damage response (DDR). In humans, telomere dysfunction features in inherited diseases such as dyskeratosis congenita, which are characterized by defects in the regulation of telomere length.

  • Several DDR pathways are engaged in the processing of deprotected telomeres, including the classical and alternative non-homologous end joining (NHEJ) pathways and the homologous recombination pathway. Studies aimed at defining how functional telomeres suppress these pathways have been instrumental in shedding light on the regulation of these crucial cellular processes.

  • Telomere deprotection and activation of telomere elongation pathways have a crucial role in the development of human cancers. Telomere erosion in proliferating pre-neoplastic cells functions as a tumour suppressor mechanism that cancer cells can bypass by engaging telomere elongation pathways.

  • The recent identification of mutations affecting telomere-associated proteins in cancer samples suggests that telomere deprotection has a crucial role in tumour progression. In agreement with this, mounting evidence suggests that in human cancers, aberrant DNA damage repair triggered at deprotected telomeres promotes genomic instability.

Abstract

Mammalian cells have evolved specialized mechanisms to sense and repair double-strand breaks (DSBs) to maintain genomic stability. However, in certain cases, the activity of these pathways can lead to aberrant DNA repair, genomic instability and tumorigenesis. One such case is DNA repair at the natural ends of linear chromosomes, known as telomeres, which can lead to chromosome-end fusions. Here, we review data obtained over the past decade and discuss the mechanisms that protect mammalian chromosome ends from the DNA damage response. We also discuss how telomere research has helped to uncover key steps in DSB repair. Last, we summarize how dysfunctional telomeres and the ensuing genomic instability drive the progression of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of telomere composition and function.
Figure 2: How shelterin protects telomeres.
Figure 3: The three facets of telomere homologous recombination: T-SCE (telomere sister chromatid exchange), t-loop (telomere loop) homologous recombination and ALT (alternative lengthening of telomeres).
Figure 4: Telomeres as a tool to investigate DNA end resection and classical non-homologous end joining (c-NHEJ).
Figure 5: The mechanism by which DNA polymerase θ (Pol θ) promotes alternative non-homologous end joining (alt-NHEJ).
Figure 6: Two independent pathways trigger telomere dysfunction in cancer.

Similar content being viewed by others

References

  1. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Meier, R. & Muller, R. A new arrangement for the registration of diaphragm movements. J. Physiol. 94, 227–231 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Greider, C. W. Telomerase and telomere-length regulation: lessons from small eukaryotes to mammals. Cold Spring Harb. Symp. Quant. Biol. 58, 719–723 (1993).

    CAS  PubMed  Google Scholar 

  4. Makarov, V. L., Hirose, Y. & Langmore, J. P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 (1997).

    CAS  PubMed  Google Scholar 

  5. McElligott, R. & Wellinger, R. J. The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705–3714 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    CAS  PubMed  Google Scholar 

  7. Doksani, Y., Wu, J. Y., de Lange, T. & Zhuang, X. Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155, 345–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    CAS  PubMed  Google Scholar 

  9. Azzalin, C. M. & Lingner, J. Telomere functions grounding on TERRA firma. Trends Cell Biol. 25, 29–36 (2015).

    CAS  PubMed  Google Scholar 

  10. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    CAS  PubMed  Google Scholar 

  11. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    CAS  PubMed  Google Scholar 

  12. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat. Genet. 17, 231–235 (1997).

    CAS  PubMed  Google Scholar 

  13. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nat. Genet. 17, 236–239 (1997).

    CAS  PubMed  Google Scholar 

  14. Ye, J. Z. & de Lange, T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat. Genet. 36, 618–623 (2004).

    CAS  PubMed  Google Scholar 

  15. Ye, J. Z. et al. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev. 18, 1649–1654 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Houghtaling, B. R., Cuttonaro, L., Chang, W. & Smith, S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr. Biol. 14, 1621–1631 (2004).

    CAS  PubMed  Google Scholar 

  17. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nat. Genet. 23, 405–412 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, D. et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6, 673–680 (2004).

    CAS  PubMed  Google Scholar 

  19. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    CAS  PubMed  Google Scholar 

  20. Loayza, D. & De Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 423, 1013–1018 (2003).

    CAS  PubMed  Google Scholar 

  21. Wu, L. et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126, 49–62 (2006).

    CAS  PubMed  Google Scholar 

  22. Hockemeyer, D., Daniels, J. P., Takai, H. & de Lange, T. Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126, 63–77 (2006).

    CAS  PubMed  Google Scholar 

  23. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    CAS  PubMed  Google Scholar 

  24. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    CAS  PubMed  Google Scholar 

  25. Sfeir, A., Kabir, S., van Overbeek, M., Celli, G. B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327, 1657–1661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye, J. Z. et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 279, 47264–47271 (2004).

    CAS  PubMed  Google Scholar 

  27. Dejardin, J. & Kingston, R. E. Purification of proteins associated with specific genomic loci. Cell 136, 175–186 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Grolimund, L. et al. A quantitative telomeric chromatin isolation protocol identifies different telomeric states. Nat. Commun. 4, 2848 (2013).

    PubMed  Google Scholar 

  29. Bartocci, C. et al. Isolation of chromatin from dysfunctional telomeres reveals an important role for Ring1b in NHEJ-mediated chromosome fusions. Cell Rep. 7, 1320–1332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nittis, T. et al. Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS. Mol. Cell. Proteomics 9, 1144–1156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miyake, Y. et al. RPA-like mammalian Ctc1–Stn1–Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206 (2009).

    CAS  PubMed  Google Scholar 

  32. Surovtseva, Y. V. et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207–218 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shibuya, H. et al. MAJIN links telomeric DNA to the nuclear membrane by exchanging telomere cap. Cell 163, 1252–1266 (2015).

    CAS  PubMed  Google Scholar 

  34. Shibuya, H., Ishiguro, K. & Watanabe, Y. The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat. Cell Biol. 16, 145–156 (2014).

    CAS  PubMed  Google Scholar 

  35. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3, 155–168 (2003).

    CAS  PubMed  Google Scholar 

  36. Karlseder, J. et al. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol. 2, E240 (2004).

    PubMed  PubMed Central  Google Scholar 

  37. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).In this publication, the authors demonstrate that ATM and ATR signalling are repressed by TRF2 and POT1, respectively, and that efficient end joining of deprotected telomeres is dependent on DNA damage signalling.

    CAS  PubMed  Google Scholar 

  38. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS  PubMed  Google Scholar 

  39. Amiard, S. et al. A topological mechanism for TRF2-enhanced strand invasion. Nat. Struct. Mol. Biol. 14, 147–154 (2007).

    CAS  PubMed  Google Scholar 

  40. Okamoto, K. et al. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494, 502–505 (2013).This publication highlights a mechanism by which TRF2 inhibits ATM signalling and identifies the iDDR domain of TRF2 as important for RNF168 inhibition.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Benarroch-Popivker, D. et al. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol. Cell 61, 274–286 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).This report demonstrates that deprotection of telomeres by inhibiting the function of human TRF2 leads to chromosome fusions.

    CAS  PubMed  Google Scholar 

  43. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, D., O'Connor, M. S., Qin, J. & Songyang, Z. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem. 279, 51338–51342 (2004).

    CAS  PubMed  Google Scholar 

  45. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2010).

    CAS  PubMed  Google Scholar 

  46. Sarthy, J., Bae, N. S., Scrafford, J. & Baumann, P. Human RAP1 inhibits non-homologous end joining at telomeres. EMBO J. 28, 3390–3399 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabir, S., Hockemeyer, D. & de Lange, T. TALEN gene knockouts reveal no requirement for the conserved human shelterin protein Rap1 in telomere protection and length regulation. Cell Rep. 9, 1273–1280 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez, P. et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat. Cell Biol. 12, 768–780 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsu, H. L., Gilley, D., Blackburn, E. H. & Chen, D. J. Ku is associated with the telomere in mammals. Proc. Natl Acad. Sci. USA 96, 12454–12458 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y., Ghosh, G. & Hendrickson, E. A. Ku86 represses lethal telomere deletion events in human somatic cells. Proc. Natl Acad. Sci. USA 106, 12430–12435 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7, 653–665 (1997).

    CAS  PubMed  Google Scholar 

  52. Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P. & Blasco, M. A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1, 244–252 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ribes-Zamora, A., Indiviglio, S. M., Mihalek, I., Williams, C. L. & Bertuch, A. A. TRF2 interaction with Ku heterotetramerization interface gives insight into c-NHEJ prevention at human telomeres. Cell Rep. 5, 194–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayashi, M. T., Cesare, A. J., Fitzpatrick, J. A., Lazzerini-Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat. Struct. Mol. Biol. 19, 387–394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Orthwein, A. et al. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189–193 (2014).This publication identifies the molecular mechanism that allows mammalian cells to inhibit DSB repair during mitosis. The authors show that restoring mitotic DSB repair results in severe genomic instability owing to the accumulation of telomere fusions.

    CAS  PubMed  Google Scholar 

  56. Hayashi, M. T., Cesare, A. J., Rivera, T. & Karlseder, J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature 522, 492–496 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kibe, T., Osawa, G. A., Keegan, C. E. & de Lange, T. Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol. Cell. Biol. 30, 1059–1066 (2010).

    CAS  PubMed  Google Scholar 

  59. Takai, K. K., Kibe, T., Donigian, J. R., Frescas, D. & de Lange, T. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell 44, 647–659 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gong, Y. & de Lange, T. A. Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol. Cell 40, 377–387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    CAS  PubMed  Google Scholar 

  62. Flynn, R. L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).This publication identifies telomere replication defects as the major consequence of TRF1 loss in mouse cells and defines telomere fragility as a hallmark of replication stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zimmermann, M., Kibe, T., Kabir, S. & de Lange, T. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev. 28, 2477–2491 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Wong, K. K. et al. Diminished lifespan and acute stress-induced death in DNA-PKcs-deficient mice with limiting telomeres. Oncogene 26, 2815–2821 (2007).

    CAS  PubMed  Google Scholar 

  66. Lin, T. T. et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood 116, 1899–1907 (2010).In this study, the authors carry out single-molecule telomere analysis in patients with chronic lymphocytic leukaemia and report the incidence of telomere erosion and, subsequently, telomere fusions in advanced stages of the disease.

    CAS  PubMed  Google Scholar 

  67. Simpson, K. et al. Telomere fusion threshold identifies a poor prognostic subset of breast cancer patients. Mol. Oncol. 9, 1186–1193 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Letsolo, B. T., Rowson, J. & Baird, D. M. Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements. Nucleic Acids Res. 38, 1841–1852 (2010).

    CAS  PubMed  Google Scholar 

  69. Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).This publication delineates the process of end protection by removing all six subunits of the shelterin complex and identifying the various DNA damage signalling and repair pathways activated at deprotected chromosome ends.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rai, R. et al. The function of classical and alternative non-homologous end-joining pathways in the fusion of dysfunctional telomeres. EMBO J. 29, 2598–2610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Badie, S. et al. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. EMBO J. 34, 410–424 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng, Q. et al. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res. 39, 9605–9619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, M. et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 34, 6170–6182 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clerici, M., Mantiero, D., Guerini, I., Lucchini, G. & Longhese, M. P. The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep. 9, 810–818 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mimitou, E. P. & Symington, L. S. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J. 29, 3358–3369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Truong, L. N. et al. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl Acad. Sci. USA 110, 7720–7725 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, P., Takai, H. & de Lange, T. Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150, 39–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, P., van Overbeek, M., Rooney, S. & de Lange, T. Apollo contributes to G overhang maintenance and protects leading-end telomeres. Mol. Cell 39, 606–617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lam, Y. C. et al. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J. 29, 2230–2241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chai, W., Shay, J. W. & Wright, W. E. Human telomeres maintain their overhang length at senescence. Mol. Cell. Biol. 25, 2158–2168 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lottersberger, F., Bothmer, A., Robbiani, D. F., Nussenzweig, M. C. & de Lange, T. Role of 53BP1 oligomerization in regulating double-strand break repair. Proc. Natl Acad. Sci. USA 110, 2146–2151 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Parkinson, G. N., Lee, M. P. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002).

    CAS  PubMed  Google Scholar 

  83. Martinez, P. et al. Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev. 23, 2060–2075 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Miller, K. M., Rog, O. & Cooper, J. P. Semi-conservative DNA replication through telomeres requires Taz1. Nature 440, 824–828 (2006).

    CAS  PubMed  Google Scholar 

  85. Vannier, J. B. et al. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342, 239–242 (2013).This publication describes an interaction between RTEL1 and PCNA. Blocking this interaction affects genome-wide replication, induces telomere fragility and accelerates the onset of tumorigenesis in p53-deficient mice.

    CAS  PubMed  Google Scholar 

  86. Drosopoulos, W. C., Kosiyatrakul, S. T. & Schildkraut, C. L. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J. Cell Biol. 210, 191–208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Crabbe, L., Verdun, R. E., Haggblom, C. I. & Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953 (2004).

    CAS  PubMed  Google Scholar 

  88. Arnoult, N., Saintome, C., Ourliac-Garnier, I., Riou, J. F. & Londono-Vallejo, A. Human POT1 is required for efficient telomere C-rich strand replication in the absence of WRN. Genes Dev. 23, 2915–2924 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stewart, J. A. et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J. 31, 3537–3549 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kasbek, C., Wang, F. & Price, C. M. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J. Biol. Chem. 288, 30139–30150 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ye, J. et al. TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. Cell 142, 230–242 (2010).

    CAS  PubMed  Google Scholar 

  92. Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Celli, G. B., Denchi, E. L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).

    PubMed  Google Scholar 

  94. Palm, W., Hockemeyer, D., Kibe, T. & de Lange, T. Functional dissection of human and mouse POT1 proteins. Mol. Cell. Biol. 29, 471–482 (2009).

    CAS  PubMed  Google Scholar 

  95. Arat, N. O. & Griffith, J. D. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J. Biol. Chem. 287, 41583–41594 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sarek, G., Vannier, J. B., Panier, S., Petrini, J. H. & Boulton, S. J. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell 57, 622–635 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vannier, J. B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I., Ding, H. & Boulton, S. J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012).

    CAS  PubMed  Google Scholar 

  98. Wang, R. C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    CAS  PubMed  Google Scholar 

  99. Compton, S. A., Choi, J. H., Cesare, A. J., Ozgur, S. & Griffith, J. D. Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells. Cancer Res. 67, 1513–1519 (2007).

    CAS  PubMed  Google Scholar 

  100. Pickett, H. A., Cesare, A. J., Johnston, R. L., Neumann, A. A. & Reddel, R. R. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J. 28, 799–809 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pickett, H. A., Henson, J. D., Au, A. Y., Neumann, A. A. & Reddel, R. R. Normal mammalian cells negatively regulate telomere length by telomere trimming. Hum. Mol. Genet. 20, 4684–4692 (2011).

    CAS  PubMed  Google Scholar 

  102. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 (1997).This report identifies ALT as a telomerase-independent mechanism that maintains telomeres in a subset of tumours.

    CAS  PubMed  Google Scholar 

  103. Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

    CAS  PubMed  Google Scholar 

  104. Yeager, T. R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179 (1999).

    CAS  PubMed  Google Scholar 

  105. Arora, R. et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5, 5220 (2014).

    CAS  PubMed  Google Scholar 

  106. Londono-Vallejo, J. A., Der-Sarkissian, H., Cazes, L., Bacchetti, S. & Reddel, R. R. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res. 64, 2324–2327 (2004).

    CAS  PubMed  Google Scholar 

  107. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R. R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Conomos, D. et al. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J. Cell Biol. 199, 893–906 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gocha, A. R., Harris, J. & Groden, J. Alternative mechanisms of telomere lengthening: permissive mutations, DNA repair proteins and tumorigenic progression. Mutat. Res. 743–744, 142–150 (2013).

    PubMed  Google Scholar 

  110. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).The authors of this report discover recurrent, inactivating mutations in ATRX and DAXX in telomerase-positive human pancreatic neuroendocrine tumours, which rely on ALT to maintain telomeres.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    PubMed  Google Scholar 

  113. Napier, C. E. et al. ATRX represses alternative lengthening of telomeres. Oncotarget 6, 16543–16558 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Gibbons, R. J., Picketts, D. J., Villard, L. & Higgs, D. R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with α-thalassemia (ATR-X syndrome). Cell 80, 837–845 (1995).

    CAS  PubMed  Google Scholar 

  115. Garcia-Cao, M., O'Sullivan, R., Peters, A. H., Jenuwein, T. & Blasco, M. A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    CAS  PubMed  Google Scholar 

  116. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wong, L. H. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20, 351–360 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Law, M. J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  119. Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. O'Sullivan, R. J. et al. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat. Struct. Mol. Biol. 21, 167–174 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Conomos, D., Reddel, R. R. & Pickett, H. A. NuRD-ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat. Struct. Mol. Biol. 21, 760–770 (2014).

    CAS  PubMed  Google Scholar 

  122. Ramamoorthy, M. & Smith, S. Loss of ATRX suppresses resolution of telomere cohesion to control recombination in ALT cancer cells. Cancer Cell 28, 357–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Cho, N. W., Dilley, R. L., Lampson, M. A. & Greenberg, R. A. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108–121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Peuscher, M. H. & Jacobs, J. J. DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat. Cell Biol. 13, 1139–1145 (2011).

    CAS  PubMed  Google Scholar 

  125. Porro, A., Feuerhahn, S. & Lingner, J. TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres. Cell Rep. 6, 765–776 (2014).

    CAS  PubMed  Google Scholar 

  126. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).In this report, the authors demonstrate that loss of 53BP1 rescues phenotypes associated with BRCA1 deficiency by allowing cells to overcome defects in homologous recombination.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339, 700–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 1266–1280 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Escribano-Diaz, C. et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49, 872–883 (2013).This publication defines the molecular mechanisms that allow c-NHEJ to dominate in the G1phase of the cell cycle and enables homologous recombination to be favoured in S/G2. The authors identify RIF1 as a key effector of 53BP1 that inhibits resection at DSBs.

    CAS  PubMed  Google Scholar 

  132. Chapman, J. R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).

    CAS  PubMed  Google Scholar 

  134. Boersma, V. et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521, 537–540 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Simsek, D. et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 7, e1002080 (2011).This study identifies Pol θ as a key factor that promotes alt-NHEJ. Inhibition of Pol θ increases the frequency of homologous recombination and compromised the survival of homologous recombination-defective cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Seki, M., Marini, F. & Wood, R. D. POLQ (Pol θ), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res. 31, 6117–6126 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kent, T., Chandramouly, G., McDevitt, S. M., Ozdemir, A. Y. & Pomerantz, R. T. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat. Struct. Mol. Biol. 22, 230–237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518, 258–262 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yousefzadeh, M. J. et al. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet. 10, e1004654 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Chan, S. H., Yu, A. M. & McVey, M. Dual roles for DNA polymerase θ in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet. 6, e1001005 (2010).

    PubMed  PubMed Central  Google Scholar 

  142. Koole, W. et al. A polymerase theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun. 5, 3216 (2014).

    PubMed  Google Scholar 

  143. Lemee, F. et al. DNA polymerase θ up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc. Natl Acad. Sci. USA 107, 13390–13395 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Higgins, G. S. et al. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. Oncotarget 1, 175–184 (2010).

    PubMed  PubMed Central  Google Scholar 

  145. Heiss, N. S. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    CAS  PubMed  Google Scholar 

  146. Vulliamy, T. J. et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol. Dis. 34, 257–263 (2005).

    CAS  PubMed  Google Scholar 

  147. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    CAS  PubMed  Google Scholar 

  148. Walne, A. J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    CAS  PubMed  Google Scholar 

  149. Walne, A. J., Vulliamy, T., Beswick, R., Kirwan, M. & Dokal, I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594–3600 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Savage, S. A. et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet. 82, 501–509 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhong, F. et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 25, 11–16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, J. W. Telomere shortening by mutations in the RTEL1 helicase cause severe form of dyskeratosis congenita, Hoyerall-Hreidarsson syndrome. Clin. Genet. 84, 210 (2013).

    CAS  PubMed  Google Scholar 

  153. Walne, A. J., Vulliamy, T., Kirwan, M., Plagnol, V. & Dokal, I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am. J. Hum. Genet. 92, 448–453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ballew, B. J. et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in dyskeratosis congenita. Hum. Genet. 132, 473–480 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Savage, S. A. Human telomeres and telomere biology disorders. Progress Mol. Biol. Translat. Sci. 125, 41–66 (2014).

    CAS  Google Scholar 

  156. Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4aΔ2/3 cancer-prone mouse. Cell 97, 515–525 (1999).

    CAS  PubMed  Google Scholar 

  157. Perera, S. A. et al. Telomere dysfunction promotes genome instability and metastatic potential in a K-ras p53 mouse model of lung cancer. Carcinogenesis 29, 747–753 (2008).

    CAS  PubMed  Google Scholar 

  158. Feldser, D. M. & Greider, C. W. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11, 461–469 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kaul, Z., Cesare, A. J., Huschtscha, L. I., Neumann, A. A. & Reddel, R. R. Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep. 13, 52–59 (2012).

    CAS  Google Scholar 

  160. Cesare, A. J., Hayashi, M. T., Crabbe, L. & Karlseder, J. The telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol. Cell 51, 141–155 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Capper, R. et al. The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev. 21, 2495–2508 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).This publication shows that dicentric chromosomes can persist through mitosis and are resolved 3–20 hours after anaphase by the cytoplasmic nuclease TREX1. This is thought to promote chromothripsis and kataegis.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jones, R. E. et al. Escape from telomere-driven crisis is DNA ligase III dependent. Cell Rep. 8, 1063–1076 (2014).

    CAS  PubMed  Google Scholar 

  164. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).Using telomerase-deficient mice, the authors provide in vivo evidence that telomere erosion in a p53-null background promotes the development of epithelial tumours that display complex chromosomal rearrangements, including non-reciprocal translocations.

    CAS  PubMed  Google Scholar 

  165. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat. Genet. 28, 155–159 (2001).

    CAS  PubMed  Google Scholar 

  166. Ding, Z. et al. Telomerase reactivation following telomere dysfunction yields murine prostate tumors with bone metastases. Cell 148, 896–907 (2012).In this report, the authors show that reactivation of telomerase in cells with dysfunctional telomeres augments the metastatic potential of prostate tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Chin, K. et al. In situ analyses of genome instability in breast cancer. Nat. Genet. 36, 984–988 (2004).

    CAS  PubMed  Google Scholar 

  168. Jeon, H. S. et al. Telomere length of tumor tissues and survival in patients with early stage non-small cell lung cancer. Mol. Carcinog. 53, 272–279 (2014).

    CAS  PubMed  Google Scholar 

  169. Strefford, J. C. et al. Telomere length predicts progression and overall survival in chronic lymphocytic leukemia: data from the UK LRF CLL4 trial. Leukemia 29, 2411–2414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    CAS  PubMed  Google Scholar 

  171. Hahn, W. C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164–1170 (1999).

    CAS  PubMed  Google Scholar 

  172. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).In this report, the authors identify a germline mutation in the promoter of TERT , which creates a binding motif for ETS and TCF transcription factors.

    CAS  PubMed  Google Scholar 

  173. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Heidenreich, B., Rachakonda, P. S., Hemminki, K. & Kumar, R. TERT promoter mutations in cancer development. Curr. Opin. Genet. Dev. 24, 30–37 (2014).

    CAS  PubMed  Google Scholar 

  175. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 73, 7162–7167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Remke, M. et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 126, 917–929 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Quaas, A. et al. Frequency of TERT promoter mutations in primary tumors of the liver. Virchows Arch. 465, 673–677 (2014).

    CAS  PubMed  Google Scholar 

  179. Atala, A. Re: TERT promoter mutations and telomerase reactivation in urothelial cancer. J. Urol. 194, 848–849 (2015).

    PubMed  Google Scholar 

  180. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Borah, S. et al. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347, 1006–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Bell, R. J. et al. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036–1039 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Chiba, K. et al. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife 4, e07918 (2015).

    PubMed Central  Google Scholar 

  184. Quesada, V. et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 44, 47–52 (2012).

    CAS  Google Scholar 

  185. Ramsay, A. J. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 45, 526–530 (2013).This sequence analysis of >300 patients with chronic lymphocytic leukaemia identifies recurrent somatic mutations in POT1 . The mutations mostly cluster in the DNA-binding domains of POT1 and affect its telomere-protective function.

    CAS  PubMed  Google Scholar 

  186. Robles-Espinoza, C. D. et al. POT1 loss-of-function variants predispose to familial melanoma. Nat. Genet. 46, 478–481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Shi, J. et al. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat. Genet. 46, 482–486 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bainbridge, M. N. et al. Germline mutations in shelterin complex genes are associated with familial glioma. J. Natl Cancer Inst. 107, 384 (2015).

    PubMed  Google Scholar 

  189. Kataoka, K. et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat. Genet. 47, 1304–1315 (2015).

    CAS  PubMed  Google Scholar 

  190. Landau, D. A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Calvete, O. et al. A mutation in the POT1 gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like families. Nat. Commun. 6, 8383 (2015).

    CAS  PubMed  Google Scholar 

  192. Aoude, L. G. et al. Nonsense mutations in the shelterin complex genes ACD and TERF2IP in familial melanoma. J. Natl Cancer Inst. 107, dju408 (2015).

    PubMed  Google Scholar 

  193. Hartmann, K. et al. Gene dosage reductions of Trf1 and/or Tin2 induce telomere DNA damage and lymphoma formation in aging mice. Leukemia 30, 749–753 (2015).

    PubMed  PubMed Central  Google Scholar 

  194. Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).

    CAS  PubMed  Google Scholar 

  196. Attwooll, C. L., Akpinar, M. & Petrini, J. H. The Mre11 complex and the response to dysfunctional telomeres. Mol. Cell. Biol. 29, 5540–5551 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Dimitrova, N. & de Lange, T. Cell cycle-dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of nonhomologous end joining (NHEJ) in G1 and resection-mediated inhibition of NHEJ in G2. Mol. Cell. Biol. 29, 5552–5563 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Deng, Y., Guo, X., Ferguson, D. O. & Chang, S. Multiple roles for MRE11 at uncapped telomeres. Nature 460, 914–918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Dimitrova, N. & de Lange, T. MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes Dev. 20, 3238–3243 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to the colleagues whose work they could not cite owing to space constraints. They thank A. Penev, S. K. Deng, Lynda Groocock, F. Lottersberger and D. Conomos for comments on the manuscript. Research in the authors' laboratories is supported by grants from the US National Institutes of Health (DP2CA195767 and DK102562 to A.S., and AG038677 to E.L.D.) and the American Cancer Society (RSG-14-186) to E.L.D. A.S. is a Pew-Stewart Scholar, a Damon Runyon-Rachleff grant recipient and a fellow of the David and Lucille Packard foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eros Lazzerini-Denchi or Agnel Sfeir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

DNA damage response

(DDR). A collection of pathways that sense, signal and repair DNA lesions.

Dicentric chromosomes

Aberrant chromosomes with two centromeres, resulting from the fusion of two chromosomes.

Breakage–fusion–bridge

A mechanism producing chromosomal instability, triggered by the fusion of deprotected telomeres, which leads to repeating cycles of chromosome breakage and fusion.

Fragile telomeres

Breaks or gaps at telomeres of metaphase chromosomes, caused by replication stress.

Fragile sites

Genomic regions that appear as gaps or breaks on metaphase chromosomes when DNA replication is partially inhibited.

ALT-associated PML bodies

(APBs). Promyelocytic leukaemia (PML) bodies are dynamic protein aggregates within the nuclei of some cells that contain the PML protein. Alternative lengthening of telomeres (ALT)-associated PML bodies are found exclusively in cancer cells, which rely on the ALT pathway to maintain telomeres.

Quantitative telomeric chromatin isolation protocol

(QTIP). A telomere-protein purification method used to quantify changes in the content of telomeric chromatin.

Proteomics of isolated chromatin segments

(PICh). A method to identify proteins associated with specific genomic loci that are rich in repetitive DNA.

Telomere biology disorder

(TBD). One of a set of pathologies that are defined by the presence of short telomeres.

Chromothripsis

A mutational phenomenon that involves catastrophic shattering and rebuilding of chromosomes, leading to multiple clustered chromosomal rearrangements.

Kataegis

Clustered point mutations that localize to particular regions of certain cancer genomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzerini-Denchi, E., Sfeir, A. Stop pulling my strings — what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 17, 364–378 (2016). https://doi.org/10.1038/nrm.2016.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing