Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The parallel lives of angiogenesis and immunosuppression: cancer and other tales

Abstract

Emerging evidence indicates that angiogenesis and immunosuppression frequently occur simultaneously in response to diverse stimuli. Here, we describe a fundamental biological programme that involves the activation of both angiogenesis and immunosuppressive responses, often through the same cell types or soluble factors. We suggest that the initiation of these responses is part of a physiological and homeostatic tissue repair programme, which can be co-opted in pathological states, notably by tumours. This view can help to devise new cancer therapies and may have implications for aseptic tissue injury, pathogen-mediated tissue destruction, chronic inflammation and even reproduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Promotion of angiogenesis by immunosuppressive cells.
Figure 2: The role of VEGFA in immune suppression.
Figure 3: Modulation of immune cell recruitment and diapedesis through the endothelial barrier by the tumour microenvironment.
Figure 4: Direct immune regulation by the endothelium.

Similar content being viewed by others

References

  1. Szekanecz, Z. & Koch, A. E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nature Clin. Pract. Rheumatol. 3, 635–643 (2007).

    CAS  Google Scholar 

  2. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    CAS  PubMed  Google Scholar 

  3. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    CAS  Google Scholar 

  4. Riboldi, E. et al. Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J. Immunol. 175, 2788–2792 (2005).

    CAS  PubMed  Google Scholar 

  5. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nature Med. 12, 1065–1074 (2006).

    CAS  PubMed  Google Scholar 

  6. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shrestha, B. et al. B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J. Immunol. 184, 4819–4826 (2010).

    CAS  PubMed  Google Scholar 

  8. Qin, Z. et al. B cells inhibit induction of T cell-dependent tumor immunity. Nature Med. 4, 627–630 (1998).

    CAS  PubMed  Google Scholar 

  9. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via Ccl28 and TReg cells. Nature 475, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  10. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nature Med. 14, 28–36 (2008).

    CAS  PubMed  Google Scholar 

  11. West, X. Z. et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972–976 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kandalaft, L. E., Powell, D. J. Jr, Singh, N. & Coukos, G. Immunotherapy for ovarian cancer: what's next? J. Clin. Oncol. 29, 925–933 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    CAS  Google Scholar 

  15. Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777–2790 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, B. et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66, 1123–1131 (2006).

    CAS  PubMed  Google Scholar 

  17. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    CAS  PubMed  Google Scholar 

  18. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer 8, 618–631 (2008).

    CAS  Google Scholar 

  19. Conejo-Garcia, J. R. et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nature Med. 10, 950–958 (2004).

    CAS  PubMed  Google Scholar 

  20. Sica, A. et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumor-associated macrophages. J. Immunol. 164, 762–767 (2000).

    CAS  PubMed  Google Scholar 

  21. Burke, B. et al. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am. J. Pathol. 163, 1233–1243 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J. & Griffioen, A. W. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J. Leukoc. Biol. 80, 1183–1196 (2006).

    CAS  PubMed  Google Scholar 

  23. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  24. Giatromanolaki, A. et al. The presence of tumor-infiltrating FOXP3+ lymphocytes correlates with intratumoral angiogenesis in endometrial cancer. Gynecol. Oncol. 110, 216–221 (2008).

    CAS  PubMed  Google Scholar 

  25. Gupta, S., Joshi, K., Wig, J. D. & Arora, S. K. Intratumoral FOXP3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncol. 46, 792–797 (2007).

    CAS  PubMed  Google Scholar 

  26. Freeman, M. R. et al. Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res. 55, 4140–4145 (1995).

    CAS  PubMed  Google Scholar 

  27. Stabile, E. et al. Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108, 205–210 (2003).

    PubMed  Google Scholar 

  28. Huang, M. T. et al. Regulatory T cells negatively regulate neovasculature of airway remodeling via DLL4–Notch signaling. J. Immunol. 183, 4745–4754 (2009).

    CAS  PubMed  Google Scholar 

  29. Bourbie-Vaudaine, S., Blanchard, N., Hivroz, C. & Romeo, P. H. Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. J. Immunol. 177, 1460–1469 (2006).

    CAS  PubMed  Google Scholar 

  30. Sarris, M., Andersen, K. G., Randow, F., Mayr, L. & Betz, A. G. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28, 402–413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Inoue, S., Leitner, W. W., Golding, B. & Scott, D. Inhibitory effects of B cells on antitumor immunity. Cancer Res. 66, 7741–7747 (2006).

    CAS  PubMed  Google Scholar 

  32. Halder, R. C., Aguilera, C., Maricic, I. & Kumar, V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Invest. 117, 2302–2312 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, L. et al. Regulation of activated CD4+ T cells by NK cells via the Qa-1–NKG2A inhibitory pathway. Immunity 26, 593–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakita, D. et al. Tumor-infiltrating IL-17-producing γδT cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 40, 1927–1937 (2010).

    CAS  PubMed  Google Scholar 

  35. Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    CAS  PubMed  Google Scholar 

  36. Kalkunte, S. S. et al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal–fetal interface. J. Immunol. 182, 4085–4092 (2009).

    CAS  PubMed  Google Scholar 

  37. Kyriakakis, E. et al. Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur. J. Immunol. 40, 3268–3279 (2010).

    CAS  PubMed  Google Scholar 

  38. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer 6, 392–401 (2006).

    CAS  Google Scholar 

  39. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    CAS  PubMed  Google Scholar 

  40. Bottazzi, B., Walter, S., Govoni, D., Colotta, F. & Mantovani, A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J. Immunol. 148, 1280–1285 (1992).

    CAS  PubMed  Google Scholar 

  41. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. da Silva Meirelles, L., Caplan, A. I. & Nardi, N. B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287–2299 (2008).

    PubMed  Google Scholar 

  43. Krampera, M. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101, 3722–3729 (2003).

    CAS  PubMed  Google Scholar 

  44. Aggarwal, S. & Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).

    CAS  PubMed  Google Scholar 

  45. Ringden, O. et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81, 1390–1397 (2006).

    PubMed  Google Scholar 

  46. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Rev. Cancer 8, 579–591 (2008).

    CAS  Google Scholar 

  47. Della Porta, M. et al. Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 68, 276–284 (2005).

    CAS  PubMed  Google Scholar 

  48. Takahashi, A. et al. Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines. Cancer Immunol. Immunother. 53, 543–550 (2004).

    CAS  PubMed  Google Scholar 

  49. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med. 2, 1096–1103 (1996).

    CAS  PubMed  Google Scholar 

  50. Ishida, T., Oyama, T., Carbone, D. P. & Gabrilovich, D. I. Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J. Immunol. 161, 4842–4851 (1998).

    CAS  PubMed  Google Scholar 

  51. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med. 9, 562–567 (2003).

    CAS  PubMed  Google Scholar 

  52. Ohm, J. E. et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878–4886 (2003).

    CAS  PubMed  Google Scholar 

  53. Huang, Y. et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110, 624–631 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shin, J. Y., Yoon, I. H., Kim, J. S., Kim, B. & Park, C. G. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells. Cell. Immunol. 256, 72–78 (2009).

    CAS  PubMed  Google Scholar 

  55. Li, B. et al. Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin. Cancer Res. 12, 6808–6816 (2006).

    CAS  PubMed  Google Scholar 

  56. Suzuki, H. et al. VEGFR2 is selectively expressed by FOXP3high CD4+ TReg . Eur. J. Immunol. 40, 197–203 (2010).

    CAS  PubMed  Google Scholar 

  57. Montesinos, M. C., Shaw, J. P., Yee, H., Shamamian, P. & Cronstein, B. N. Adenosine A2A receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am. J. Pathol. 164, 1887–1892 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Alfranca, A. et al. PGE2 induces angiogenesis via MT1-MMP-mediated activation of the TGFβ/Alk5 signaling pathway. Blood 112, 1120–1128 (2008).

    CAS  PubMed  Google Scholar 

  59. Lebrin, F., Deckers, M., Bertolino, P. & Ten Dijke, P. TGF-β receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2005).

    CAS  PubMed  Google Scholar 

  60. Zanin-Zhorov, A. et al. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J. Clin. Invest. 116, 2022–2032 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Manicassamy, S. et al. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nature Med. 15, 401–409 (2009).

    CAS  PubMed  Google Scholar 

  62. Yamazaki, S. et al. TLR2-dependent induction of IL-10 and Foxp3+CD25+CD4+ regulatory T cells prevents effective anti-tumor immunity induced by Pam2 lipopeptides in vivo. PLoS ONE 6, e18833 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Oldford, S. A. et al. A critical role for mast cells and mast cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J. Immunol. 185, 7067–7076 (2010).

    CAS  PubMed  Google Scholar 

  64. Imanishi, T. et al. Cutting edge: TLR2 directly triggers Th1 effector functions. J. Immunol. 178, 6715–6719 (2007).

    CAS  PubMed  Google Scholar 

  65. Chamorro, S. et al. TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J. Immunol. 183, 2984–2994 (2009).

    CAS  PubMed  Google Scholar 

  66. Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 28, 323–344 (2011).

    Google Scholar 

  67. Bouma-ter Steege, J. C. et al. Angiogenic profile of breast carcinoma determines leukocyte infiltration. Clin. Cancer Res. 10, 7171–7178 (2004).

    CAS  PubMed  Google Scholar 

  68. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  69. Detmar, M. et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J. Invest. Dermatol. 111, 1–6 (1998).

    CAS  PubMed  Google Scholar 

  70. Griffioen, A. W., Damen, C. A., Blijham, G. H. & Groenewegen, G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88, 667–673 (1996).

    CAS  PubMed  Google Scholar 

  71. Griffioen, A. W., Damen, C. A., Martinotti, S., Blijham, G. H. & Groenewegen, G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res. 56, 1111–1117 (1996).

    CAS  PubMed  Google Scholar 

  72. Bouzin, C., Brouet, A., De Vriese, J., Dewever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte–endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178, 1505–1511 (2007).

    CAS  PubMed  Google Scholar 

  73. Min, J. K. et al. Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-κB pathway. Circ. Res. 96, 300–307 (2005).

    CAS  PubMed  Google Scholar 

  74. Dirkx, A. E. et al. Tumor angiogenesis modulates leukocyte–vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res. 63, 2322–2329 (2003).

    CAS  PubMed  Google Scholar 

  75. Bagnato, A. et al. Expression of endothelin 1 and endothelin A receptor in ovarian carcinoma: evidence for an autocrine role in tumor growth. Cancer Res. 59, 720–727 (1999).

    CAS  PubMed  Google Scholar 

  76. Nummer, D. et al. Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. J. Natl Cancer Inst. 99, 1188–1199 (2007).

    CAS  PubMed  Google Scholar 

  77. Shetty, S. et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J. Immunol. 186, 4147–4155 (2011).

    CAS  PubMed  Google Scholar 

  78. Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nature Immunol. 3, 143–150 (2002).

    CAS  Google Scholar 

  79. Mazanet, M. M. & Hughes, C. C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    CAS  PubMed  Google Scholar 

  80. Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).

    CAS  PubMed  Google Scholar 

  81. Sata, M. & Walsh, K. TNFα regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nature Med. 4, 415–420 (1998).

    CAS  PubMed  Google Scholar 

  82. Secchiero, P. & Zauli, G. The puzzling role of TRAIL in endothelial cell biology. Arterioscler. Thromb. Vasc. Biol. 28, e4; author reply e5–e6 (2008).

    CAS  PubMed  Google Scholar 

  83. Ma, L. et al. Ig gene-like molecule CD31 plays a nonredundant role in the regulation of T-cell immunity and tolerance. Proc. Natl Acad. Sci. USA 107, 19461–19466 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hernandez, G. L. et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med. 193, 607–620 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pirtskhalaishvili, G. & Nelson, J. B. Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate 44, 77–87 (2000).

    CAS  PubMed  Google Scholar 

  86. Huang, X. et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J. Exp. Med. 207, 505–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Batista, C. E. et al. Imaging correlates of differential expression of indoleamine 2,3-dioxygenase in human brain tumors. Mol. Imaging Biol. 11, 460–466 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Riesenberg, R. et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin. Cancer Res. 13, 6993–7002 (2007).

    CAS  PubMed  Google Scholar 

  89. Wang, Y. et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Med. 16, 279–285 (2010).

    CAS  PubMed  Google Scholar 

  90. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Choi, J., Enis, D. R., Koh, K. P., Shiao, S. L. & Pober, J. S. T lymphocyte–endothelial cell interactions. Annu. Rev. Immunol. 22, 683–709 (2004).

    CAS  PubMed  Google Scholar 

  92. Mulligan, J. K., Day, T. A., Gillespie, M. B., Rosenzweig, S. A. & Young, M. R. Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions. Hum. Immunol. 70, 375–382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mulligan, J. K. & Young, M. R. Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol. Immunother. 59, 267–277 (2009).

    Google Scholar 

  94. Nahrendorf, M., Pittet, M. J. & Swirski, F. K. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121, 2437–2445 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Conejo-Garcia, J. R. et al. Vascular leukocytes contribute to tumor vascularization. Blood 105, 679–681 (2005).

    CAS  PubMed  Google Scholar 

  96. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med. 9, 789–795 (2003).

    CAS  PubMed  Google Scholar 

  97. Yan, S. F. et al. Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J. Biol. Chem. 270, 11463–11471 (1995).

    CAS  PubMed  Google Scholar 

  98. Cohen, T., Nahari, D., Cerem, L. W., Neufeld, G. & Levi, B. Z. Interleukin 6 induces the expression of vascular endothelial growth factor. J. Biol. Chem. 271, 736–741 (1996).

    CAS  PubMed  Google Scholar 

  99. Wei, L. H. et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22, 1517–1527 (2003).

    CAS  PubMed  Google Scholar 

  100. Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  102. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  103. Ivy, S. P., Wick, J. Y. & Kaufman, B. M. An overview of small-molecule inhibitors of VEGFR signaling. Nature Rev. Clin. Oncol. 6, 569–579 (2009).

    CAS  Google Scholar 

  104. Ebos, J. M. & Kerbel, R. S. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nature Rev. Clin. Oncol. 8, 210–221 (2011).

    CAS  Google Scholar 

  105. Quezada, S. A. et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 205, 2125–2138 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang, H. Y. et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc. Natl Acad. Sci. USA 102, 3738–3743 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Basu, G. D. et al. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J. Immunol. 177, 2391–2402 (2006).

    CAS  PubMed  Google Scholar 

  108. Escudier, B. et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28, 2144–2150 (2010).

    CAS  PubMed  Google Scholar 

  109. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Arenberg, D. A. et al. Interferon-γ-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J. Exp. Med. 184, 981–992 (1996).

    CAS  PubMed  Google Scholar 

  112. Sgadari, C. et al. Mig, the monokine induced by interferon-γ, promotes tumor necrosis in vivo. Blood 89, 2635–2643 (1997).

    CAS  PubMed  Google Scholar 

  113. Lasagni, L. et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J. Exp. Med. 197, 1537–1549 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yano, K. et al. Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J. Exp. Med. 203, 1447–1458 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cavassani, K. A. et al. The post sepsis-induced expansion and enhanced function of regulatory T cells create an environment to potentiate tumor growth. Blood 115, 4403–4411 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114, 901–914 (2009).

    CAS  PubMed  Google Scholar 

  117. Muthuswamy, R. et al. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 68, 5972–5978 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Baratelli, F. et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J. Immunol. 175, 1483–1490 (2005).

    CAS  PubMed  Google Scholar 

  119. Ahmadi, M., Emery, D. C. & Morgan, D. J. Prevention of both direct and cross-priming of antitumor CD8+ T-cell responses following overproduction of prostaglandin E2 by tumor cells in vivo. Cancer Res. 68, 7520–7529 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rodriguez, P. C. et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202, 931–939 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ohta, A. et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments. J. Immunol. 183, 5487–5493 (2009).

    CAS  PubMed  Google Scholar 

  122. Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251–259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hasko, G., Linden, J., Cronstein, B. & Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nature Rev. Drug Discov. 7, 759–770 (2008).

    CAS  Google Scholar 

  124. Taylor, A. W. Review of the activation of TGF-β in immunity. J. Leukoc. Biol. 85, 29–33 (2009).

    CAS  PubMed  Google Scholar 

  125. Li, Y. et al. Local expression of indoleamine 2,3-dioxygenase protects engraftment of xenogeneic skin substitute. J. Invest. Dermatol. 126, 128–136 (2006).

    CAS  PubMed  Google Scholar 

  126. Biancone, L. et al. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J. Exp. Med. 186, 147–152 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, X. et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 69, 1685–1692 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Volpert, O. V. et al. Inhibition of angiogenesis by interleukin 4. J. Exp. Med. 188, 1039–1046 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Fukushi, J., Ono, M., Morikawa, W., Iwamoto, Y. & Kuwano, M. The activity of soluble VCAM-1 in angiogenesis stimulated by IL-4 and IL-13. J. Immunol. 165, 2818–2823 (2000).

    CAS  PubMed  Google Scholar 

  130. Yamaji-Kegan, K., Su, Q., Angelini, D. J. & Johns, R. A. IL-4 is proangiogenic in the lung under hypoxic conditions. J. Immunol. 182, 5469–5476 (2009).

    CAS  PubMed  Google Scholar 

  131. Eubank, T. D., Galloway, M., Montague, C. M., Waldman, W. J. & Marsh, C. B. M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J. Immunol. 171, 2637–2643 (2003).

    CAS  PubMed  Google Scholar 

  132. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Okazaki, T. et al. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int. Immunol. 18, 1–9 (2006).

    CAS  PubMed  Google Scholar 

  134. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    CAS  Google Scholar 

  135. Otsuji, M., Kimura, Y., Aoe, T., Okamoto, Y. & Saito, T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl Acad. Sci. USA 93, 13119–13124 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Spinella, F., Rosano, L., Di Castro, V., Natali, P. G. & Bagnato, A. Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. J. Biol. Chem. 279, 46700–46705 (2004).

    CAS  PubMed  Google Scholar 

  137. Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nature Med. 7, 1339–1346 (2001).

    CAS  PubMed  Google Scholar 

  138. Lin, Y. L., Liang, Y. C. & Chiang, B. L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol. 82, 1473–1480 (2007).

    CAS  PubMed  Google Scholar 

  139. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev. Cancer 8, 942–956 (2008).

    CAS  Google Scholar 

  140. Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jarnicki, A. G. et al. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J. Immunol. 180, 3797–3806 (2008).

    CAS  PubMed  Google Scholar 

  142. Macedo, L. et al. Wound healing is impaired in MyD88-deficient mice: a role for MyD88 in the regulation of wound healing by adenosine A2A receptors. Am. J. Pathol. 171, 1774–1788 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, L. et al. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by US National Institutes of Health grant R01-CA116779, US National Cancer Institute ovarian cancer SPORE grant P01-CA83638 and the Ovarian Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Coukos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

Glossary

Adoptive cell therapy

Very simply, the transfusion of lymphocytes into patients for the treatment of cancer. Strategies that have enjoyed success include the rapid ex vivo expansion of tumour-infiltrating lymphocytes followed by autologous reinjection. Engineering of patient peripheral blood T cells to express artificial T cell receptors or chimeric antigen receptors that recognize tumour antigens is a recently developed strategy that has proved successful.

Diapedesis

Leukocyte migration through the endothelium that is mediated by leukocyte-secreted proteases that disrupt the endothelial cell barrier.

Extravasation

The multistep process of leukocyte infiltration through the endothelium. This process proceeds through the stages of leukocyte rolling, adhesion, diapedesis and finally migration to the surrounding tissues.

Ischaemia–reperfusion injury

Disruption of proper blood flow, either experimentally or otherwise, followed by restoration of normal blood flow results in significant hypoxia, tissue damage and inflammation followed by angiogenesis and immunosuppression.

Mural cells

Cells that physically surround the endothelial cells of blood vessels. This population is comprised of vascular smooth muscle cells (associated with veins and arteries) and pericytes (associated with capillaries and developing vessels).

Pericyte

A mural cell that is thought to have significant roles in supporting the growth and survival of endothelial cells during angiogenesis, particularly in tumours.

Trogocytosis

Following the formation of the immunological synapse, membrane fragments from the antigen-presenting cell are physically transferred to, and transiently incorporated in, the membrane of the interacting T cell (or B or NK cell). The biological significance remains wholly unknown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motz, G., Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11, 702–711 (2011). https://doi.org/10.1038/nri3064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3064

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer