Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Overcoming TGFβ-mediated immune evasion in cancer

Abstract

Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies — including immune checkpoint blockade — to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TGFβ functions in healthy tissues and during cancer progression.
Fig. 2: TGFβ production, release and signalling.
Fig. 3: Regulation of stromal cell types by TGFβ in advanced cancer.

Similar content being viewed by others

References

  1. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. David, C. J. & Massagué, J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat. Rev. Mol. Cell Biol. 19, 419–435 (2018). This comprehensive review summarizes current knowledge of the TGFβ signalling transduction pathway and discusses the molecular basis for contextual TGFβ responses in different cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2018 202 20, 69–84 (2018).

    Article  Google Scholar 

  4. Katsuno, Y. & Derynck, R. Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev. Cell 56, 726–746 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Moses, H. L., Roberts, A. B. & Derynck, R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb. Perspect. Biol. 8, a021865 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roberts, A. B. et al. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl Acad. Sci. USA 83, 4167–4171 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Massague, J. The transforming growth factor-β family. Annu. Rev. Cell Biol. 6, 597–641 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Sporn, M. B. et al. Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo. Science 219, 1324–1326 (1983).

    Article  Google Scholar 

  9. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Dvorak, H. F. Tumors: wounds that do not heal. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Kehrl, J. H. et al. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J. Immunol. 137, 1037–1050 (1986).

    Article  Google Scholar 

  12. Kehrl, J. H. et al. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med. 163, 1037–1050 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Rook, A. H. et al. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol. 136, 3916–3920 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Kuppner, M. C., Hamou, M. -F., Bodmer, S., Fontana, A. & De Tribolet, N. The glioblastoma-derived T-cell suppressor factor/transforming growth factor beta2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int. J. Cancer 42, 562–567 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Maeda, H. & Shiraishi, A. TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J. Immunol. 156, 73–78 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Arteaga, C. L. et al. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J. Clin. Invest. 92, 2569–2576 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat. Med. 7, 1118–1122 (2001). This study finds that mice lacking TGFβ signalling in T cells reject tumours. A caveat of this early study is that the mouse strain used exhibits defects in T cell specification due to TGFβ inhibition during early T cell development.

    Article  CAS  PubMed  Google Scholar 

  18. Sanjabi, S., Oh, S. A. & Li, M. O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 9, a022236 (2017). This comprehensive review discusses the main roles of TGFβ during the development of the immune system, in immune homeostasis and in immune-driven diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu. Rev. Immunol. 32, 51–82 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, W. & ten Dijke, P. Immunoregulation by members of the TGFβ superfamily. Nat. Rev. Immunol. 16, 723–740 (2016).

    Article  PubMed  Google Scholar 

  21. Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heldin, C. H. & Moustakas, A. Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 8, a022053 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shariat, S. F. et al. Association of pre- and postoperative plasma levels of transforming growth factor β1 and interleukin 6 and its soluble receptor with prostate cancer progression. Clin. Cancer Res. 10, 1992–1999 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Tsushima, H. et al. High levels of transforming growth factor β1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Desruisseau, S. et al. Determination of TGFβI protein level in human primary breast cancers and its relationship with survival. Br. J. Cancer 94, 239–246 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8, 21907–21908 (2016).

    Article  Google Scholar 

  28. Verstraeten, A., Alaerts, M., Van Laer, L. & Loeys, B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum. Mutat. 37, 524–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Tran, D. Q. et al. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc. Natl Acad. Sci. USA 106, 13445–13450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, R. et al. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol. Cell 23, 1129–1139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin, Y. et al. A milieu molecule for TGF-β required for microglia function in the nervous system. Cell 174, 156–171.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes. Dev. 14, 163–176 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Illman, S. A., Lehti, K., Keski-Oja, J. & Lohi, J. Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J. Cell Sci. 119, 3856–3865 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Metelli, A. et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci. Transl. Med. 12, eaay4860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, X., Hudson, N. E., Lu, C. & Springer, T. A. Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat. Struct. Mol. Biol. 21, 1091–1096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liénart, S. et al. Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells. Science 362, 952–956 (2018). This study solves the crystal structure of the GARP–L-TGFβ complex and proposes a model for the integrin-dependent mechanical activation of TGFβ1. It also studies how therapeutic antibodies that bind to the complex prevent TGFβ1 release.

    Article  PubMed  Google Scholar 

  37. Annes, J. P., Chen, Y., Munger, J. S. & Rifkin, D. B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J. Cell Biol. 165, 723–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wipff, P.-J., Rifkin, D. B., Meister, J.-J. & Hinz, B. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lodyga, M. & Hinz, B. TGF-β1 - a truly transforming growth factor in fibrosis and immunity. Semin. Cell Dev. Biol. 101, 123–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Campbell, M. G. et al. Cryo-EM reveals integrin-mediated TGF-β activation without release from latent TGF-β. Cell 180, 490–501.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nolte, M. & Margadant, C. Controlling immunity and inflammation through integrin-dependent regulation of TGF-β. Trends Cell Biol. 30, 49–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Bates, R. C. et al. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J. Clin. Invest. 115, 339–347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takasaka, N. et al. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI insight 3, e122591 (2018).

    Article  PubMed Central  Google Scholar 

  44. Malenica, I. et al. Integrin-αV-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat. Commun. 12, 5209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Metelli, A. et al. Surface expression of TGFβ docking receptor GARP promotes oncogenesis and immune tolerance in breast cancer. Cancer Res. 76, 7106–7117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rachidi, S. et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci. Immunol. 2, eaai7911 (2017). This article describes a major role for platelets during cancer immune evasion through TGFβ1–GARP cell surface complexes. The authors show that GARP knockout in platelets enhances antitumour immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Brown, N. F. & Marshall, J. F. Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers. 11, 1221 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  49. Gabriely, G. et al. Targeting latency-associated peptide promotes antitumor immunity. Sci. Immunol. 2, eaaj1738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12, eaay8456 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Eberlein, C. et al. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene 32, 4406–4416 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Reader, C. S. et al. The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. J. Pathol. 249, 332–342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stockis, J. et al. Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αVβ8. Proc. Natl Acad. Sci. USA 114, E10161–E10168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dodagatta-Marri, E. et al. Integrin αvβ8 on T cells is responsible for suppression of anti-tumor immunity in syngeneic models and is a promising target for tumor immunotherapy. SSRN Electron. J. 36, 109309 (2020).

    Google Scholar 

  55. Zhang, N. & Bevan, M. J. TGF-beta signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat. Immunol. 13, 667–673 (2012). This study, together with the study by Śledzińska et al. (2012), shows that Tgfbr2 deletion in CD4+ and CD8+ adult T cells does not lead to autoimmunity but increases TCR activation by weak stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Śledzińska, A. et al. TGF-β signalling is required for CD4+T cell homeostasis but dispensable for regulatory T cell function. PLoS Biol. 11, e1001674 (2013). This study, together with the study by Zhang et al. (2012), demonstrates that deletion of Tgfbr2 in mature CD4+ T cells does not result in lethal autoinflammation as previously shown in mice lacking TGFβ signalling during early T cell development. However, adult Tgfbr2-mutant CD4+ T cells exhibit increased TCR sensitivity.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bauché, D. & Marie, J. C. Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clin. Transl. Immunol. 6, e136 (2017).

    Article  Google Scholar 

  58. Becker, C. et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004). This study shows that genetic inhibition of TGFβ in T cells triggers excessive inflammation in the gut and leads to the formation of dysplastic lesions in the colonic mucosa. Mechanistically, lack of TGFβ signalling in T cells increases IL-6 secretion, resulting in activation of STAT3 in tumour cells.

    Article  CAS  PubMed  Google Scholar 

  59. Hahn, J. N., Falck, V. G. & Jirik, F. R. Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice. J. Clin. Invest. 121, 4030–4042 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, B.-G. et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441, 1015–1019 (2006). This study demonstrates that mice with Smad4 mutation in epithelial cells of the gastrointestinal tract do not develop an overt pathology, whereas Smad4 deletion in T cells results in a TH2-type inflammatory response that drives the formation of tumours in the intestine.

    Article  CAS  PubMed  Google Scholar 

  61. Bhowmick, N. A. et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004). The authors investigate fibroblast-specific Tgfbr2-knockout mice and show that these mice develop tumours in the epithelium of the prostate and the forestomach. They propose that loss of TGFβ signalling causes upregulation of HGF in fibroblasts, which in turns promotes carcinogenesis in the adjacent epithelium.

    Article  CAS  PubMed  Google Scholar 

  62. Achyut, B. R. et al. Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet. 9, e1003251 (2013). This study investigates the mechanism that causes epithelial neoplasia by Tgfbr2 deletion in fibroblasts. The authors demonstrate that lack of TGFβ signalling in fibroblasts increases inflammation and DNA damage in epithelial cells of the forestomach. Anti-inflammatory drugs alleviate this effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Garg, A. D. & Agostinis, P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol. Rev. 280, 126–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Gajewski, T. F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Balkwill, F. R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Wahl, S. M., Allen, J. B., Weeks, B. S., Wong, H. L. & Klotman, P. E. Transforming growth factor β enhances integrin expression and type IV collagenase secretion in human monocytes. Proc. Natl Acad. Sci. USA 90, 4577–4581 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q. W. & Nathan, C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J. Exp. Med. 178, 605–613 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Boutard, V. et al. Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity. J. Immunol. 155, 2077–2084 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kelly, A. et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J. Exp. Med. 215, 2725–2736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Novitskiy, S. V. et al. Deletion of TGF-beta signaling in myeloid cells enhances their anti-tumorigenic properties. J. Leukoc. Biol. 92, 641–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryzhov, S. V. et al. Role of TGF-β signaling in generation of CD39+CD73+myeloid cells in tumors. J. Immunol. 193, 3155–3164 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Pang, Y. et al. TGF-β Signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 3, 936–951 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shima, T. et al. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci. 111, 727–738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018). In this study, we develop human-like mouse models of metastatic CRC and show that a TGFβ-activated TME leads to T cell exclusion in these aggressive cancers. TGFβ inhibition using small-molecule inhibitors synergizes with ICIs to exert robust and long-lasting T cell responses against metastatic disease.

    Article  CAS  PubMed  Google Scholar 

  77. Liu, Y. et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500–5510 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Guo, L. et al. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumor Biol. 37, 115–125 (2016).

    Article  CAS  Google Scholar 

  79. Kadin, M., Butmarc, J., Elovic, A. & Wong, D. Eosinophils are the major source of transforming growth factor-β1 in nodular sclerosing Hodgkin’s disease. Am. J. Pathol. 142, 11–16 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).

    Article  PubMed  Google Scholar 

  82. Mishalian, I. et al. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol. Immunother. 62, 1745–1756 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Jackstadt, R. et al. Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell 36, 319–336.e7 (2019). This study links metastasis in CRC models to neutrophil recruitment by TGFβ signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356, 1795–1799 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Waldhauer, I. & Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Long, E. O., Sik Kim, H., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Shen, M. et al. FASN-TGF-β1-PD-L1 axis contributes to the development of resistance to NK cell cytotoxicity of cisplatin-resistant lung cancer cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 313–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Alhossiny, M. et al. Ly6E/K signaling to TGFβ promotes breast cancer progression, immune escape, and drug resistance. Cancer Res. 76, 3376–3386 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Guan, Z. et al. TGF-β induces HLA-G expression through inhibiting MIR-152 in gastric cancer cells. J. Biomed. Sci. 22, 107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Eisele, G. et al. TGF-β and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129, 2416–2425 (2006).

    Article  PubMed  Google Scholar 

  94. Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nat. Immunol. 6, 600–607 (2005). This study shows that expression of a dominant-negative TGFBR2 produces TGFβ-dysfunctional NK cells that are more proliferative and active and produce more IFNγ.

    Article  CAS  PubMed  Google Scholar 

  95. Yu, J. et al. Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity 24, 575–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Castriconi, R. et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, J.-C., Lee, K.-M., Kim, D.-W. & Heo, D. S. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Sun, H. et al. Human CD96 correlates to natural killer cell exhaustion and predicts the prognosis of human hepatocellular carcinoma. Hepatology 70, 168–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Zaiatz-Bittencourt, V., Finlay, D. K. & Gardiner, C. M. Canonical TGF-β signaling pathway represses human NK cell metabolism. J. Immunol. 200, 3934–3941 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Trotta, R. et al. TGF-β utilizes SMAD3 to inhibit CD16-mediated IFN-γ production and antibody-dependent cellular cytotoxicity in human NK cells. J. Immunol. 181, 3784–3792 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J. Immunol. 182, 240–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Szczepanski, M. J., Szajnik, M., Welsh, A., Whiteside, T. L. & Boyiadzis, M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-β1. Haematologica 96, 1302–1309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Clayton, A. et al. Human tumor-derived exosomes down-modulate NKG2D expression. J. Immunol. 180, 7249–7258 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017). This study demonstrates a new immune evasion mechanism: TGFβ-mediated conversion of NK cells into type 1 ILCs, which explains a decrease in IFNγ and an increase in TNF and immune checkpoint molecules. In addition, this study sheds light on ILC subset plasticity.

    Article  CAS  PubMed  Google Scholar 

  108. Cortez, V. S. et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat. Immunol. 18, 995–1003 (2017). This article shows a non-canonical TGFβ-dependent mechanism of converting NK cells into type 1 ILC cells, illustrating ILC subset plasticity, and emphasizing a newly identified route that tumours use to evade immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fionda, C. et al. Hitting more birds with a stone: impact of TGF-β on ILC activity in cancer. J. Clin. Med. 9, 143 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  110. Bernink, J. H. et al. c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019).

    Article  CAS  PubMed  Google Scholar 

  111. Gardner, A. & Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 37, 855–865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Papaspyridonos, M. et al. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat. Commun. 6, 6840 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Gonzalez-Junca, A. et al. Autocrine TGFβ is a survival factor for monocytes and drives immunosuppressive lineage commitment. Cancer Immunol. Res. 7, 306–320 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Iberg, C. A., Jones, A. & Hawiger, D. Dendritic cells as inducers of peripheral tolerance. Trends Immunol. 38, 793–804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nandan, D. & Reiner, N. E. TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action. J. Immunol. 158, 1095–1101 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Ramalingam, R. et al. Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J. Immunol. 189, 3878–3893 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Esebanmen, G. E. & Langridge, W. H. R. The role of TGF-beta signaling in dendritic cell tolerance. Immunol. Res. 65, 987–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Dumitriu, I. E., Dunbar, D. R., Howie, S. E., Sethi, T. & Gregory, C. D. Human dendritic cells produce TGF-β1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 182, 2795–2807 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Travis, M. A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007). This study provide evidence that DCs induce immune tolerance by releasing active TGFβ from latent deposits using αVβ8 integrins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Païdassi, H. et al. Preferential expression of integrin αvβ8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology 141, 1813–1820 (2011).

    Article  PubMed  Google Scholar 

  123. Worthington, J. J., Czajkowska, B. I., Melton, A. C. & Travis, M. A. Intestinal dendritic cells specialize to activate transforming growth factor-β and induce Foxp3+ regulatory T cells via integrin αvβ8. Gastroenterology 141, 1802–1812 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Ogata, M. et al. Chemotactic response toward chemokines and its regulation by transforming growth factor-β1 of murine bone marrow hematopoietic progenitor cell-derived different subset of dendritic cells. Blood 93, 3225–3232 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Sato, K. et al. TGF-β1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J. Immunol. 164, 2285–2295 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Imai, K. et al. Inhibition of dendritic cell migration by transforming growth factor-1 increases tumor-draining lymph node metastasis. J. Exp. Clin. Cancer Res. 31, 1–9 (2012).

    Article  Google Scholar 

  127. Kobie, J. J. et al. Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63, 1860–1864 (2003).

    CAS  PubMed  Google Scholar 

  128. Terra, M. et al. Tumor-derived TGFb alters the ability of plasmacytoid dendritic cells to respond to innate immune signaling. Cancer Res. 78, 3014–3026 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Reizis, B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50, 37–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sisirak, V. et al. Breast cancer-derived transforming growth factor-β and tumor necrosis factor-α compromise interferon-α production by tumor-associated plasmacytoid dendritic cells. Int. J. Cancer 133, 771–778 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Bekeredjian-Ding, I. et al. Tumour-derived prostaglandin E2 and transforming growth factor-β synergize to inhibit plasmacytoid dendritic cell-derived interferon-α. Immunology 128, 439–450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, C.-H. et al. Transforming growth factor beta blocks Tec kinase phosphorylation, Ca2+ influx, and NFATc translocation causing inhibition of T cell differentiation. J. Exp. Med. 197, 1689–1699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tu, E. et al. T cell receptor-regulated TGF-β type I receptor expression determines T cell quiescence and activation. Immunity 48, 745–759.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, K.-D. et al. Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment. Nat. Commun. 8, 15365 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brownlie, R. J. et al. Resistance to TGFβ suppression and improved anti-tumor responses in CD8+ T cells lacking PTPN22. Nat. Commun. 8, 1–10 (2017).

    Article  CAS  Google Scholar 

  136. Gunderson, A. J. et al. TGFβ suppresses CD8+T cell expression of CXCR3 and tumor trafficking. Nat. Commun. 11, 1749 (2020). This study investigates tumour immune evasion in mice deficient in Tgfbr1 in Treg cells, macrophages, and CD8+ T cells. It shows that only deletion in CD8+ T cells enhances antitumour responses. It provides evidence that TGFβ suppresses CD8+ T cell function through two mechanisms: increasing TCR activation threshold and downregulating the chemokine receptor CXCR3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sad, S. & Mosmann, T. R. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Gorelik, L., Constant, S. & Flavell, R. A. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lin, J. T., Martin, S. L., Xia, L. & Gorham, J. D. TGF-beta 1 uses distinct mechanisms to inhibit IFN-gamma expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J. Immunol. 174, 5950–5958 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Takimoto, T. et al. Smad2 and Smad3 are redundantly essential for the TGF-β–mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185, 842–855 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Genestier, L., Kasibhatla, S., Brunner, T. & Green, D. R. Transforming growth factor β1 inhibits Fas ligand expression and subsequent activation-induced cell death in T cells via downregulation of c-Myc. J. Exp. Med. 189, 231–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wolfraim, L. A., Walz, T. M., James, Z., Fernandez, T. & Letterio, J. J. p21 Cip1 and p27 Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-β-mediated G 1 arrest through modulation of IL-2 responsiveness. J. Immunol. 173, 3093–3102 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Li, M. O., Sanjabi, S. & Flavell, R. A. A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Marie, J. C., Liggitt, D. & Rudensky, A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 25, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Jiao, S. et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179, 1177–1190.e13 (2019). This study provides evidence of the context-dependent role of TGFβ in suppressing therapeutic responses by ICI therapy. The authors show that in prostate cancer bone metastasis, but not in primary tumours, TGFβ impairs TH1-type responses by skewing T cell differentiation towards the TH17 cell lineage.

    Article  CAS  PubMed  Google Scholar 

  148. Ravi, R. et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun. 9, 741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kuwahara, M. et al. The transcription factor Sox4 is a downstream target of signaling by the cytokine TGF-β and suppresses TH2 differentiation. Nat. Immunol. 13, 778–786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li, S. et al. Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. Nature 587, 121–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, M. et al. TGF-β suppresses type 2 immunity to cancer. Nature 587, 115–120 (2020). This study shows that in addition to the well-established role of TGFβ in inhibiting TH1-type antitumour immunity, TGFβ also promotes immune evasion by impeding IL-4-driven TH2-type responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Knochelmann, H. M. et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 15, 458–469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Martinez, G. J. et al. Smad2 positively regulates the generation of Th17 cells. J. Biol. Chem. 285, 29039–29043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Nakanishi, Y. et al. Simultaneous loss of both atypical protein kinase C genes in the intestinal epithelium drives serrated intestinal cancer by impairing immunosurveillance. Immunity 49, 1132–1147.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fantini, M. C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 104, 18169–18174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhou, L. et al. TGF-Β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Moo-Young, T. A. et al. Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother. 32, 12–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Courau, T. et al. TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight 1, e85974 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Kullberg, M. C. et al. TGF-β1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur. J. Immunol. 35, 2886–2895 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Gutcher, I. et al. Autocrine transforming growth factor-β1 promotes in vivo Th17 cell differentiation. Immunity 34, 396–408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Donkor, M. K. et al. T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine. Immunity 35, 123–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Worthington, J. J. et al. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42, 903–915 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cuende, J. et al. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci. Transl. Med. 7, 284ra56–284ra56 (2015).

    Article  PubMed  Google Scholar 

  169. de Streel, G. et al. Selective inhibition of TGF-β1 produced by GARP-expressing Tregs overcomes resistance to PD-1/PD-L1 blockade in cancer. Nat. Commun. 11, (2020).

  170. Vermeersch, E. et al. Deletion of GARP on mouse regulatory T cells is not sufficient to inhibit the growth of transplanted tumors. Cell. Immunol. 332, 129–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, L. et al. Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor -insensitive CD8+ T cells. Clin. Cancer Res. 16, 164–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Bollard, C. M. et al. Adapting a transforming growth factor β-related tumor protection strategy to enhance antitumor immunity. Blood 99, 3179–3187 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Bollard, C. M. et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J. Clin. Oncol. 36, 1128–1139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005). This study provides initial evidence that TGFβ signals directly in CD8+ T cells to silence the expression of the cytotoxic effector programme.

    Article  CAS  PubMed  Google Scholar 

  175. Stephen, T. L. et al. Transforming growth factor β-mediated suppression of antitumor T cells requires Foxp1 transcription factor expression. Immunity 41, 427–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 302, 1041–1043 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Ahmadzadeh, M. & Rosenberg, S. A. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol. 174, 5215–5223 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Yoon, J.-H. et al. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes. EMBO Mol. Med. 5, 1720–1739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Cepek, K. L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αeβ7 integrin. Nature 372, 190–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  183. El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647–1657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Yu, C. I. et al. Human CD1c+ dendritic cells drive the differentiation of CD103+CD8+ mucosal effector T cells via the cytokine TGF-β. Immunity 38, 818–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hu, Y., Lee, Y.-T., Kaech, S. M., Garvy, B. & Cauley, L. S. Smad4 promotes differentiation of effector and circulating memory CD8 T cells but is dispensable for tissue-resident memory CD8 T cells. J. Immunol. 194, 2407–2414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Boutet, M. et al. TGFβ signaling intersects with CD103 integrin signaling to promote T-lymphocyte accumulation and antitumor activity in the lung tumor microenvironment. Cancer Res. 76, 1757–1769 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Franciszkiewicz, K. et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions. Cancer Res. 73, 617–628 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Desmouliere, A., Geinoz, A., Gabbiani, F. & Gabbiani, G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 122, 103–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  193. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Becker, A. et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Webber, J. P. et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34, 290–302 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Sadjadi, Z., Zhao, R., Hoth, M., Qu, B. & Rieger, H. Migration of cytotoxic T lymphocytes in 3D collagen matrices. Biophys. J. 119, 2141–2152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Wolf, K., Müller, R., Borgmann, S., Bröcker, E. B. & Friedl, P. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood 102, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  200. Nicolas-Boluda, A. & Donnadieu, E. Obstacles to T cell migration in the tumor microenvironment. Comp. Immunol. Microbiol. Infect. Dis. 63, 22–30 (2019).

    Article  PubMed  Google Scholar 

  201. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Huang, H. et al. Targeting TGF βR2-mutant tumors exposes vulnerabilities to stromal TGF β blockade in pancreatic cancer. EMBO Mol. Med. 11, (2019).

  203. Pascual-García, M. et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+T cell tumor-infiltration impairing anti-PD1 therapy. Nat. Commun. 10, 2416 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Albrengues, J. et al. LIF mediates proinvasive activation of stromal fibroblasts in cancer. Cell Rep. 7, 1664–1678 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Matsumura, T. et al. Regulation of transforming growth factor-β-dependent cyclooxygenase-2 expression in fibroblasts. J. Biol. Chem. 284, 35861–35871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lu, W. et al. Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer. EMBO Mol. Med. 13, e12798 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Bonavita, E. et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53, 1215–1229.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lacouture, M. E. et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol. Immunother. 64, 437–446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Spender, L. C. et al. Preclinical evaluation of AZ12601011 and AZ12799734, inhibitors of transforming growth factor B superfamily type 1 receptors. Mol. Pharmacol. 95, 222–234 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Lahn, M. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des. Devel. Ther. 9, 4479 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Mitra, M. S. et al. A potent Pan-TGFβ neutralizing monoclonal antibody elicits cardiovascular toxicity in mice and cynomolgus monkeys. Toxicol. Sci. 175, 24–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Li, W. et al. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J. Clin. Invest. 124, 755–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hu, J. H. et al. Postnatal deletion of the type II transforming growth factor-β receptor in smooth muscle cells causes severe aortopathy in mice. Arterioscler. Thromb. Vasc. Biol. 35, 2647–2656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Rodón, J. et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor i kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest. New Drugs 33, 357–370 (2015).

    Article  PubMed  Google Scholar 

  217. Rodón, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    Article  PubMed  Google Scholar 

  218. Kovacs, R. J. et al. Cardiac safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc. Toxicol. 15, 309–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  221. Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J. & Driscoll, J. J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Faivre, S. et al. Novel transforming growth factor beta receptor I kinase inhibitor galunisertib (LY2157299) in advanced hepatocellular carcinoma. Liver Int. 39, 1468–1477 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Jaschinski, F. et al. The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr. Pharm. Biotechnol. 12, 2203–2213 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Nemunaitis, J. et al. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol. 24, 4721–4730 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Giaccone, G. et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur. J. Cancer 51, 2321–2329 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Papachristodoulou, A. et al. Therapeutic targeting of TGFβ ligands in glioblastoma using novel antisense oligonucleotides reduces the growth of experimental gliomas. Clin. Cancer Res. 25, 7189–7201 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Seystahl, K. et al. Cancer biology and signal transduction biological role and therapeutic targeting of TGF-β3 in glioblastoma. Mol. Cancer Ther. 16, (2017).

  228. Canè, S., Van Snick, J., Uyttenhove, C., Pilotte, L. & Van den Eynde, B. J. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J. Immunother. Cancer 9, e001798 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Dodagatta-Marri, E. et al. α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer 7, 62 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl. Med. 10, eaan5488 (2018).

    Article  PubMed  Google Scholar 

  231. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. ImmunoTher. Cancer 8, e000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Burkly, L. C. et al. Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion. J. Immunol. 149, 1779–1787 (1992).

    Article  CAS  PubMed  Google Scholar 

  233. Principe, D. R. et al. TGFβ blockade augments PD-1 inhibition to promote T-cell–mediated regression of pancreatic cancer. Mol. Cancer Ther. 18, 613–620 (2019).

    Article  CAS  PubMed  Google Scholar 

  234. Janssen, E., Subtil, B., de la Jara Ortiz, F., Verheul, H. M. W. & Tauriello, D. V. F. Combinatorial immunotherapies for metastatic colorectal cancer. Cancers 12, 1875 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  235. Terabe, M. et al. Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology 6, e1308616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018). The authors show that patients with cancer bearing tumours with elevated expression of the fibroblast TGFβ response gene signature are T cell excluded and fail to respond to ICI therapy. TGFβ inhibition promotes T cell infiltration and improves the outcomes of anti-PDL1 treatment in experimental models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).

    Article  Google Scholar 

  238. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Desbois, M. et al. Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer. Nat. Commun. 11, (2020).

  240. Feun, L. G. et al. Phase 2 study of pembrolizumab and circulating biomarkers to predict anticancer response in advanced, unresectable hepatocellular carcinoma. Cancer 125, 3603–3614 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Chen, X. et al. Dual TGF-β and PD-1 blockade synergistically enhances MAGE-A3-specific CD8+ T cell response in esophageal squamous cell carcinoma. Int. J. Cancer 143, 2561–2574 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Endo, E. et al. A TGFβ-dependent stromal subset underlies immune checkpoint inhibitor efficacy in DNA mismatch repair-deficient/microsatellite instability-high colorectal cancer. Mol. Cancer Res. 18, 1402–1413 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Zhao, F. et al. Stromal fibroblasts mediate anti–PD-1 resistance via MMP-9 and dictate TGFβ inhibitor sequencing in melanoma. Cancer Immunol. Res. 6, 1459–1471 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Bai, X., Yi, M., Jiao, Y., Chu, Q. & Wu, K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. OncoTargets Ther. 12, 9527–9538 (2019).

    Article  CAS  Google Scholar 

  245. Hartley, J. & Abken, H. Chimeric antigen receptors designed to overcome transforming growth factor-β-mediated repression in the adoptive T-cell therapy of solid tumors. Clin. Transl. Immunol. 8, e1064 (2019).

    Article  Google Scholar 

  246. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Sun, J. et al. T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol. Ther. 18, 2006–2017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tang, N. et al. TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977 (2020).

    Article  PubMed Central  Google Scholar 

  249. Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  250. Boyerinas, B. et al. A novel TGF-β2/interleukin receptor signal conversion platform that protects CAR/TCR T cells from TGF-β2-mediated immune suppression and induces T cell supportive signaling networks. Blood 130, 1911–1911 (2017).

    Google Scholar 

  251. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Hou, A. J., Chang, Z. L., Lorenzini, M. H., Zah, E. & Chen, Y. Y. TGF-β-responsive CAR-T cells promote anti-tumor immune function. Bioeng. Transl. Med. 3, 75–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  255. Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y. X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article  CAS  PubMed  Google Scholar 

  256. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Rodríguez-Ruiz, M. E. et al. TGFb blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol. Cancer Ther. 18, 621–631 (2019).

    Article  PubMed  Google Scholar 

  258. Formenti, S. C. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin. Cancer Res. 24, 2493–2504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Groeneveldt, C., van Hall, T., van der Burg, S. H., ten Dijke, P. & van Montfoort, N. Immunotherapeutic potential of TGF-β inhibition and oncolytic viruses. Trends Immunol. 41, 406–420 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Otegbeye, F. et al. Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS ONE 13, e0191358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Conroy, H., Galvin, K. C., Higgins, S. C., Kingston & Mills, H. G. Gene silencing of TGF-1 enhances antitumor immunity induced with a dendritic cell vaccine by reducing tumor-associated regulatory T cells. Cancer Immunol. Immunother. 61, 425–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  262. Rocconi, R. P. et al. Gemogenovatucel-T (Vigil) immunotherapy as maintenance in frontline stage III/IV ovarian cancer (VITAL): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Oncol. 21, 1661–1672 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  265. Keedy, V. L. et al. Association of TGF-β responsive signature with anti-tumor effect of vactosertib, a potent, oral TGF-β receptor type I (TGFBRI) inhibitor in patients with advanced solid tumors. J. Clin. Oncol. 36, 3031–3031 (2018).

    Article  Google Scholar 

  266. Pei, H. et al. Abstract 955: LY3200882, a novel, highly selective TGFβRI small molecule inhibitor. Cancer Res. 77 (Suppl. 13), 955 (2017).

    Article  Google Scholar 

  267. Xu, Z. et al. Abstract 4568: a novel TGF-beta receptor I kinase inhibitor demonstrated to be an effective immuno-therapy for cancer. Cancer Res. 77 (Suppl. 13), 4568 (2017).

    Article  Google Scholar 

  268. Hu, G. et al. Abstract 3072: GFH018, a novel TGF-βRI inhibitor, for the treatment of advanced solid tumors. Cancer Res. 79 (Suppl. 13), 3072 (2019).

    Article  Google Scholar 

  269. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Greco, R. et al. Pan-TGFβ inhibition by SAR439459 relieves immunosuppression and improves antitumor efficacy of PD-1 blockade. Oncoimmunology 9, 1811605 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Bedinger, D. et al. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms. MAbs 8, 389–404 (2016).

    Article  CAS  PubMed  Google Scholar 

  272. Cohn, A. et al. A phase I dose-escalation study to a predefined dose of a transforming growth factor-β1 monoclonal antibody (TβM1) in patients with metastatic cancer. Int. J. Oncol. 45, 2221–2231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Zhong, Z. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16, 1191–1205 (2010).

    Article  CAS  PubMed  Google Scholar 

  274. Tolcher, A. W. et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 79, 673–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. O’Connor-McCourt, M. D. et al. Abstract 4688: AVID200: a novel computationally-designed TGF beta trap promoting anti-tumor T cell activity. Cancer Res. 77 (Suppl. 13), 4688 (2017).

    Article  Google Scholar 

  276. Yap, T. et al. P856 AVID200, first-in-class TGF-beta1 and beta3 selective inhibitor: results of a phase 1 monotherapy dose escalation study in solid tumors and evidence of target engagement in patients. J. Immunother. Cancer 8, A6.2–A7 (2020).

    Google Scholar 

  277. Bandyopadhyay, A. et al. Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res. 62, 4690–4695 (2002).

    CAS  PubMed  Google Scholar 

  278. Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Kwon, Y.-J. et al. Intradiscal injection of YH14618, a first-in-class disease-modifying therapy, reduces pain and improves daily activity in patients with symptomatic lumbar degenerative disc disease. Spine J. 15, S119 (2015).

    Article  Google Scholar 

  280. Pfeiffer, N. et al. First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery. PLoS ONE 12, e0188899 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Huber-Ruano, I. et al. An antisense oligonucleotide targeting TGF-β2 inhibits lung metastasis and induces CD86 expression in tumor-associated macrophages. Ann. Oncol. 28, 2278–2285 (2017).

    Article  CAS  PubMed  Google Scholar 

  282. Nemunaitis, J. et al. Summary of bi-shRNAfurin/GM-CSF augmented autologous tumor cell immunotherapy (FANGTM) in advanced cancer of the liver. Oncol. 87, 21–29 (2014).

    Article  CAS  Google Scholar 

  283. Melisi, D. et al. Safety and activity of the TGFβ receptor i kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J. Immunother. Cancer 9, e002068 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Strauss, J. et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFb, in advanced solid tumors. Clin. Cancer Res. 24, 1287–1295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Paz-Ares, L. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in second-line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial. J. Thorac. Oncol. 15, 1210–1222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Cho, B. C. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in advanced squamous cell carcinoma of the head and neck: results from a phase I cohort. J. Immunother. Cancer 8, e000664 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Yoo, C. et al. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J. Immunother. Cancer 8, e000564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Lin, C. C. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGFβ and PD-L1, in patients with esophageal squamous cell carcinoma: results from a phase 1 cohort in Asia. Target. Oncol. 16, 447–459 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Senzer, N. et al. Phase I trial of bi-shRNAi furin/GMCSF DNA/autologous tumor cell vaccine (FANG) in advanced cancer. Mol. Ther. 20, 679–686 (2012).

    Article  CAS  PubMed  Google Scholar 

  290. Ghisoli, M. et al. Three-year follow up of GMCSF/bi-shRNA furin DNA-transfected autologous tumor immunotherapy (Vigil) in metastatic advanced Ewing’s sarcoma. Mol. Ther. 24, 1478–1483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Barve, M. et al. Follow-up of bi-shRNA furin / GM-CSF engineered autologous tumor cell (EATC) immunotherapy Vigil® in patients with advanced melanoma. Biomed. Genet. Genomics 1, 81–86 (2016).

    Article  Google Scholar 

  292. Annes, J. P., Rifkin, D. B. & Munger, J. S. The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEBS Lett. 511, 65–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  293. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Sanford, L. P. et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 124, 2659 (1997).

    Article  CAS  PubMed  Google Scholar 

  296. Kaartinen, V. et al. Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial–mesenchymal interaction. Nat. Genet. 11, 415–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  297. Proetzel, G. et al. Transforming growth factor-β3 is required for secondary palate fusion. Nat. Genet. 11, 409–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  298. Lichtman, M. K., Otero-Vinas, M. & Falanga, V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 24, 215–222 (2016).

    Article  PubMed  Google Scholar 

  299. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012). This study finds that poor prognosis in CRC is tightly correlated with TGFβ levels and expression of a TGFβ response gene expression signature in fibroblasts. It also shows that the production of IL-11 by TGFβ-stimulated CAFs supports metastatic colonization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Lindsay, M. E. et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 2012 448 44, 922–927 (2012).

    CAS  Google Scholar 

  302. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  303. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Grauel, A. L. et al. TGFβ-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nat. Commun. 11, 6315 (2020). In this study the authors investigate CAF heterogeneity upon TGFβ inhibition in mouse tumour models using single-cell RNA sequencing. The study reveals the emergence of an interferon-licensed CAF subset characterized by upregulation of antigen presentation machinery and expression of cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020). Single-cell transcriptomes of pancreatic cancer mouse models and patient samples reveal TGFβ- and IL-1-induced CAFs. The transcriptome of the TGFβ-activated LRRC15+ CAF subset predicts poor clinical response to ICIs.

    Article  CAS  PubMed  Google Scholar 

  306. Biffi, G. et al. IL1-induced Jak/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019). This study provides evidence that pancreatic cancers contain two CAF subsets. One is driven by TGFβ and characterized by a fibrogenic and contractile phenotype. The other is induced by IL-1–NF-κB signalling and is identified by upregulation of proinflammatory mediators such as IL-6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

D.V.F.T. is funded by a Hypatia Tenure Track Fellowship grant from Radboudumc and by the Dutch Research Council (NWO–ZonMw VIDI programme, grant number 91719371). E.B. receives support from the ERC (Advanced Grant 884623), World Wide Cancer Research grant (19_0005), “la Caixa” Foundation (HR18-00359), Government of Catalonia (AGAUR-SGR698) and Spanish Association Against Cancer (AECC PROYE18046BATL).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article and reviewed and/or edited the manuscript before submission. E.B. and D.V.F.T. contributed substantially to discussion of the content.

Corresponding authors

Correspondence to Daniele V. F. Tauriello or Eduard Batlle.

Ethics declarations

Competing interests

E.B.’s research is sponsored by Incyte. E.B. and D.V.F.T. are authors named on the patent WO/2020/104648. E.S. and E.B. are authors named on the patents WO/2014/072517; WO/2021/063970 and WO/2021/063972.

Additional information

Peer review information

Nature Reviews Cancer thanks Rosemary Akhurst, Kohei Miyazono and Aristidis Moustakas for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Desmoplastic reaction

The growth of fibrous tissue around the tumour.

Dendritic cells

(DCs). Innate immune cells that respond to danger-associated molecular patterns and pathogen-associated molecular patterns, induce inflammation and can stimulate natural killer cells in the tumour microenvironment.

Thymocyte selection

Thymocytes (differentiating T cells in the thymus) are positively selected for weak binding to MHC molecules, and negatively selected (killed) if they bind MHC or self antigens too strongly. These processes are influenced by TGFβ.

Danger-associated molecular patterns or pathogen-associated molecular patterns

Molecules, molecular motifs or epitopes that are upregulated or exposed in the presence of pathogens or on damaged or dying cells. Specialized receptors on innate immune cells recognize these signals and trigger an inflammatory response.

Tumour-associated macrophages

A heterogeneous population in the tumour microenvironment originating from tissue-resident macrophages or monocytes.

Myeloid-derived suppressor cells

A heterogeneous group of myeloid immune cells that are characterized by their immunosuppressive functions. They can accumulate in cancer or infections, impinge on the function of other immune cells and are often poorly differentiated or immature.

Granulocytes

Also known as polymorphonuclear cells, a group of myeloid cells comprising neutrophils, basophils, eosinophils and mast cells.

Serrated CRC

A non-classical type of colorectal cancer (CRC) that derives from an alternative carcinogenesis pathway and has a sawtooth-like histological appearance.

Natural killer (NK) cells

Innate cytotoxic immune cells that can kill tumour cells (or pathogen-infected cells) without any priming or prior sensitization.

Antibody-dependent cellular cytotoxicity

Cell killing by virtue of target cell-specific antibodies and effector cells, such as natural killer cells, that express antibody receptors.

Innate lymphoid cells

(ILCs). Cells from the lymphoid lineage with innate immune functions, regulating other immune cells and producing signalling molecules. These lymphocytes without a T cell receptor are functionally analogous to T helper (TH) cells (TH1, TH2 and TH17 cells) and are classified accordingly (type 1, type 2 and type 3, respectively).

Plasmacytoid DCs

A subset of dendritic cells (DCs) that are found mostly in the circulation, lymph nodes and spleen. They have important roles in antiviral immunity and immune regulation, and are implicated in certain immune disorders.

MMTV-PyMT breast cancer mouse model

A mouse model of breast cancer generated by the mammary-specific expression of polyomavirus middle T antigen (PyMT), driven by a mouse mammary tumour virus (MMTV) element.

Chimeric switch receptor

Fusion proteins that link the binding of (immuno)inhibitory ligands to the activation of intracellular stimulatory signal elements, or vice versa.

In situ vaccination

The effect of therapeutically increasing the release of tumour-associated antigens, combined with innate immune cell activation, which results in (more) effective antigen presentation and T cell or B cell priming. Triggers include immunogenic cell death, radiotherapy and oncolytic viruses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauriello, D.V.F., Sancho, E. & Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer 22, 25–44 (2022). https://doi.org/10.1038/s41568-021-00413-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-021-00413-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer