Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

The challenge of immunogenicity in the quest for induced pluripotency

Abstract

Few advances have been so widely acclaimed in biology as the seminal demonstration that adult somatic cells can be induced to acquire the phenotype and differentiation potential of embryonic stem cells. The capacity to produce patient-specific stem cells that are truly pluripotent has raised prospects for the treatment of many degenerative diseases through replacement of the affected cell types. In the race to the clinic, however, questions surrounding the potential immunogenicity of such cells have been largely overlooked. Here, I explore the extent of the challenges ahead and suggest that the induction of tolerance to such cells will be crucial to the future success of induced pluripotency.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways to pluripotency.
Figure 2: Applications of disease-specific iPSCs.
Figure 3: Induction of tolerance to the products of corrected genes.

References

  1. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  2. Klimanskaya, I., Rosenthal, N. & Lanza, R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nature Rev. Drug Discov. 7, 131–142 (2008).

    Article  CAS  Google Scholar 

  3. Ilic, D. Industry update: latest developments in stem cell research and regenerative medicine. Regen. Med. 4, 607–615 (2009).

    Google Scholar 

  4. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fairchild, P. J., Robertson, N. J., Cartland, S., Nolan, K. F. & Waldmann, H. Cell replacement therapy and the evasion of destructive immunity. Stem Cell Rev. 1, 159–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse fibroblasts and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, X. et al. iPS cells produce viable mice through tetraploid complementation. Nature 461, 86–90 (2009).

    CAS  PubMed  Google Scholar 

  10. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic β cells into induced pluripotent stem cells. Curr. Biol. 18, 890–894 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loh, Y.-H. et al. Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–5479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008).

    CAS  PubMed  Google Scholar 

  14. Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Liao, J. et al. Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 11–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, H. et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2007).

    Article  PubMed  Google Scholar 

  19. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Nishikawa, S., Goldstein, R. A. & Nierras, C. R. The promise of human induced pluripotent stem cells for research and therapy. Nature Rev. Mol. Cell Biol. 9, 725–729 (2008).

    Article  CAS  Google Scholar 

  21. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Park, I.-H. et al. Disease-specific induced pluipotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urbach, A., Bar-Nur, O., Daley, G. Q. & Benvenisty, N. Differential modelling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agarwal, S. et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature 464, 292–296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kazuki, Y. et al. Complete genetic correction of iPS cells from Duchenne muscular dystrophy. Mol. Ther. 18, 386–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wernig, M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl Acad. Sci. USA 105, 5856–5861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, D. et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl Acad. Sci. USA 106, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPSC generated from autologous skin. Science 318, 1920–1923 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Meng, X.-L. et al. Induced pluripotent stem cells derived from mouse models of lysosomal storage disorders. Proc. Natl Acad. Sci. USA 107, 7886–7891 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J. et al. Neutralizing antibodies to therapeutic enzymes: considerations for testing, prevention and treatment. Nature Biotech. 26, 901–908 (2008).

    Article  CAS  Google Scholar 

  37. Scandella, D. H. Properties of anti-factor VIII inhibitor antibodies in hemophilia A patients. Semin. Thromb. Hemost. 26, 137–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kirouac, D. C. & Zandstra, P. W. The systematic production of cells for cell therapies. Cell Stem Cell 3, 369–381 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Nakatsuji, N., Nakajima, F. & Tokunaga, K. HLA-haplotype banking and iPS cells. Nature Biotech. 26, 739–740 (2008).

    Article  CAS  Google Scholar 

  40. Fairchild, P. J. Transplantation tolerance in an age of induced pluripotency. Curr. Opin. Organ Transplant. 14, 321–325 (2009).

    Article  PubMed  Google Scholar 

  41. Erlich, H. A., Opelz, G. & Hansen, J. HLA DNA typing and transplantation. Immunity 14, 347–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, G. et al. HLA-matching potential of an established human embryonic stem cell bank in China. Cell Stem Cell 5, 461–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotech. 26, 1276–1284 (2008).

    Article  CAS  Google Scholar 

  44. Giorgetti, A. et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5, 353–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gluckman, E. & Rocha, V. Cord blood transplantation: state of the art. Haematologica 94, 451–454 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Robertson, N. J. et al. Embryonic stem cell-derived tissues are immunogenic but their innate immune privilege promotes the induction of tolerance. Proc. Natl Acad. Sci. USA 104, 20920–20925 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miura, K. et al. Variation in the safety of induced pluripotent stem cell lines. Nature Biotech. 27, 743–745 (2009).

    Article  CAS  Google Scholar 

  48. Amariglio, N. et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029 (2010).

    Article  Google Scholar 

  49. Swijnenburg, R. J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl Acad. Sci. USA 105, 12991–12996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lui, K. O., Boyd, A. S., Cobbold, S. P., Waldmann, H. & Fairchild, P. J. A role for regulatory T cells in acceptance of embryonic stem cell-derived tissues transplanted across an MHC barrier. Stem Cells 28, 1905–1914 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Daley, S. R., Ma, J., Adams, E., Cobbold, S. P. & Waldmann, H. A key role for TGF-β signaling to T cells in the long-term acceptance of allografts. J. Immunol. 179, 3648–3654 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ildstad, S. T. & Sachs, D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307, 168–170 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Sykes, M. Mixed chimerism and transplant tolerance. Immunity 14, 417–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Fuchimoto, Y. et al. Mixed chimerism and tolerance without whole body irradiation in a large animal model. J. Clin. Invest. 105, 1779–1789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, C. A. et al. Stable mixed chimerism and tolerance using a non-myeloablative preparative regimen in a large animal model. J. Clin. Invest. 105, 173–181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaufman, D. S. & Thomson, J. A. Human ES cells — haematopoiesis and transplantation strategies. J. Anat. 200, 243–248 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burt, R. K. et al. Embryonic stem cells as an alternative marrow donor source: engraftment without graft-versus-host disease. J. Exp. Med. 199, 895–904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verda, L. et al. Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice. Stem Cells 26, 381–386 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Priddle, H., Jones, D. R., Burridge, P. W. & Patient, R. Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24, 815–824 (2006).

    Article  PubMed  Google Scholar 

  60. Silk, K. M. & Fairchild, P. J. Harnessing dendritic cells for the induction of transplantation tolerance. Curr. Opin. Organ Transplant. 145, 344–350 (2009).

    Article  Google Scholar 

  61. Senju, S. et al. Characterization of dendritic cells and macrophages generated by directed differentiation from mouse induced pluripotent stem cells. Stem Cells 27, 1021–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, K. D., Vodyanik, M. A. & Slukvin, I. I. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived linCD34+CD43+CD45+ progenitors. J. Clin. Invest. 119, 2818–2829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yates, S. et al. Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation. J. Immunol. 179, 967–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Turnquist, H. R. et al. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J. Immunol. 178, 7018–7031 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Horibe, E. K. et al. Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transplant. Immunol. 18, 307–318 (2008).

    Article  CAS  Google Scholar 

  66. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mahnke, K., Qian, Y., Knop, J. & Enk, A. H. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101, 4862–4869 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol. 6, 280–286 (2005).

    Article  CAS  Google Scholar 

  69. Kakkis, E. et al. Successful induction of immune tolerance to enzyme replacement therapy in canine mucopolysaccharidosis I. Proc. Natl Acad. Sci. USA 101, 829–834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dickson, P. et al. Immune tolerance improves the efficacy of enzyme replacement therapy in canine mucopolysaccharidosis I. J. Clin. Invest. 118, 2868–2876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dhodapkar, M. V. & Steinman, R. M. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood 100, 174–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Stadtfeld, M. et al. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Okita, K. et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ichida, J. K. et al. A small molecule inhibitor of TGF-β signalling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5, 491–503 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maherali, N. & Hochedlinger, K. TGFβ signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr. Biol. 19, 1718–1723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Feng, B., Ng, J. H., Heng, J. C. D. & Ng, H.-H. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4, 301–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Huangfu, D. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotech. 26, 1269–1275 (2008).

    CAS  Google Scholar 

  81. Zhou, H. et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4, 381–384 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  84. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R. & Thomson, J. A. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 98, 10716–10721 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am indebted to K. Silk, T. Davies, N. Ichiryu, S. Hackett, S. Cobbold and H. Waldmann for helpful discussions. Work on iPSCs in my laboratory is supported by seed-funding from the Oxford Stem Cell Institute and grant G0802538 from the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

International Umbilical Cord Blood Bank

Bone Marrow Donor registry

FURTHER INFORMATION

The Oxford Stem Cell Institute

The International Society for Stem Cell Research

Glossary

Blastocyst

The structure formed after the successive cell divisions of a fertilized zygote, giving rise to between 70 and 100 cells. The blastocyst consists of an outer layer, known as the trophectoderm, surrounding a central cavity (the blastocoel) and the inner cell mass. The trophectoderm gives rise to the extraembryonic tissues, including the placenta. After implantation into the endometrium of the uterus, the embryo proper develops from a portion of the inner cell mass, known as the epiblast.

Epiblast

The portion of the inner cell mass of a blastocyst that is capable of establishing the body plan of the developing embryo after implantation. As such, cells that make up the epiblast are fully pluripotent.

Human embryonic stem cells

Lines of cells derived from the epiblast of supernumerary blastocysts. Their significance lies in their ability to self-renew indefinitely under appropriate culture conditions in vitro, while retaining their inherent pluripotency.

Implantation

An event that occurs within the first few days after conception in which the blastocyst attaches to the wall of the uterus. This leads to invasion of the endometrium by trophoblasts, which subsequently form the placenta and extraembryonic tissues that support development of the embryo proper.

Induced pluripotent stem cells

Lines of self-renewing, pluripotent stem cells derived by the transient introduction of transgenes encoding transcription factors such as OCT4, SOX2, KLF4 and MYC, or the gene products themselves, into adult somatic cells. Only transient expression of the transgenes is required because the reprogramming factors upregulate expression of their endogenous counterparts, which subsequently maintain pluripotency.

Insertional mutagenesis

A type of mutation caused by the disruption of a gene following the random integration of heterologous genetic material that is required for the genetic modification of the cell.

Lysosomal storage diseases

A broad group of diseases that have a common aetiology involving a deficiency in crucial enzymes required for lysosome function. Symptoms are associated with the accumulation of the enzyme substrate, leading, ultimately, to cell death. For example, the mental retardation, motor dysfunction and infantile death associated with Sandhoff disease are caused by a deletion in the β-chain of β-hexosaminidase that results in the accumulation of gangliosides in lysosomes throughout the central nervous system.

Mitochondrial genes

The complement of genes, inherited maternally, that are encoded by the episomal DNA located in the mitochondria. Mitochondrial genes have considerable diversity between individuals and are, therefore, an important source of minor histocompatibility antigens.

Nuclear transfer embryonic stem cells

Embryonic stem cell lines derived from the epiblast of cloned blastocysts, which are created through the process of somatic cell nuclear transfer.

Pluripotent

The term used to describe cells displaying the capacity to give rise to cell types from each of the three embryonic germ layers (endoderm, ectoderm and mesoderm) and, hence, to generate a viable embryo in the tetraploid complementation assay.

Primitive and definitive haematopoiesis

Primitive haematopoiesis occurs mainly in the yolk sac during the earliest stages of ontogeny and is characterized by the generation of myeloid cells and nucleated erythrocytes, but the failure to differentiate along the lymphoid lineage. After relocating to intraembryonic sites, haematopoiesis becomes definitive, supporting the development of both myeloid and lymphoid lineages and giving rise to enucleated erythrocytes.

Somatic cell nuclear transfer

The process of injecting into an enucleated donor oocyte the diploid nucleus from a terminally differentiated somatic cell. Stimulation of the resulting construct can induce cell division and the eventual formation of a blastocyst, from which nuclear transfer embryonic stem cells can be derived.

Teratoma

A benign tumour formed by the dysregulated proliferation and differentiation of pluripotent stem cells. Teratomas typically contain a wide range of tissues derived from each of the three embryonic germ layers (endoderm, ectoderm and mesoderm), organized chaotically within the tumour mass.

Tetraploid complementation

The most rigorous assay for the demonstration of pluripotency; it involves the microinjection of stem cells into a tetraploid blastocyst containing four sets of chromosomes. The tetraploid blastocyst is produced when the two blastomeres, generated by the first division of a fertilized zygote, are fused. Under these circumstances, the tetraploid epiblast of the resulting blastocyst fails to contribute to the developing embryo which is, therefore, derived entirely from the injected diploid stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairchild, P. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol 10, 868–875 (2010). https://doi.org/10.1038/nri2878

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing