Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The concept of gut rehabilitation and the future of visceral transplantation

Key Points

  • Since the clinical introduction of intestinal transplantation in the 1990s, the evolving field of gut rehabilitation has witnessed advances in both medical and surgical management

  • Ethanol lock and omega-3 lipid formulation were introduced to enhance efficacy of total parenteral nutrition therapy

  • Enterocyte growth factors (including growth hormones and teduglutide (an analogue of glucagon-like peptide 2) have been used to enhance gut adaptation and achieve nutritional autonomy

  • Autologous surgical reconstruction and bowel lengthening have been increasingly utilized for patients with short-bowel syndrome and complex abdominal pathology

  • Intestinal transplantation has evolved with improved survival outcomes owing to innovative surgical techniques, immunosuppressive strategies and postoperative management

  • A novel management algorithm is proposed to optimize patient care through an integrated multidisciplinary approach

Abstract

In the 1990s, the introduction of visceral transplantation fuelled interest in other innovative therapeutic modalities for gut rehabilitation. Ethanol lock and omega-3 lipid formulations were introduced to reduce the risks associated with total parenteral nutrition (TPN). Autologous surgical reconstruction and bowel lengthening have been increasingly utilized for patients with complex abdominal pathology and short-bowel syndrome. Glucagon-like peptide 2 analogue, along with growth hormone, are available to enhance gut adaptation and achieve nutritional autonomy. Intestinal transplantation continues to be limited to a rescue therapy for patients with TPN failure. Nonetheless, survival outcomes have substantially improved with advances in surgical techniques, immunosuppressive strategies and postoperative management. Furthermore, both nutritional autonomy and quality of life can be restored for more than two decades in most survivors, with social support and inclusion of the liver being favourable predictors of long-term outcome. One of the current challenges is the discovery of biomarkers to diagnose early rejection and further improve liver-free allograft survival. Currently, chronic rejection with persistence of preformed and development of de novo donor-specific antibodies is a major barrier to long-term graft function; this issue might be overcome with innovative immunological and tolerogenic strategies. This Review discusses advances in the field of gut rehabilitation, including intestinal transplantation, and highlights future challenges. With the growing interest in individualized medicine and the value of health care, a novel management algorithm is proposed to optimize patient care through an integrated multidisciplinary team approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main types of visceral transplantation.
Figure 2: Bowel lengthening procedures for short-bowel syndrome.
Figure 3: Patient and graft survival.
Figure 4: Nutritional autonomy after visceral transplantation.
Figure 5
Figure 6: Donor-derived multilineage complete chimerism in a female recipient who received a multivisceral graft from a male donor.
Figure 7: A female patient who received a successful cluster transplant (liver, duodenum and pancreas) in 1988.
Figure 8

Similar content being viewed by others

References

  1. Wilmore, D. W. & Dudrick, S. J. Growth and development of an infant receiving all nutrients exclusively by vein. JAMA 203, 860–864 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Grant, D. et al. Successful small-bowel/liver transplantation. Lancet 335, 181–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Todo, S. et al. Cadaveric small bowel and small bowel-liver transplantation in humans. Transplantation 53, 369–379 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bijo, J. K., Maqsood, K. A. & Speerhas, R. Ethanol lock therapy in reducing catheter-related bloodstream infections in adult hom parenteral nutrition patients: results of a retrospective study. JPEN J. Parenter. Enteral Nutr. 36, 603 (2012).

    Article  Google Scholar 

  5. Koletzko, B. & Goulet, O. Fish oil containing intravenous lipid emulsions in parental nutrition-associated cholestatic liver disease. Curr. Opin. Clin. Nutr. 13, 321–326 (2010).

    Article  CAS  Google Scholar 

  6. Byrne, T. A. et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: a prospective, randomized, placebo-controlled, double-blind clinical trial. Ann. Surg. 242, 655–661 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jeppesen, P. B. New approaches to the treatments of short bowel syndrome-associated intestinal failure. Curr. Opin. Gastroenterol. 30, 182–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Abu-Elmagd, K. M. et al. Gut rehabilitation and intestinal transplantation. Therapy 2, 853–864 (2005).

    Article  Google Scholar 

  9. Sudan, D. et al. Comparison of intestinal lengthening procedures for patients with short bowel syndrome. Ann. Surg. 246, 593–601 (2007).

    Article  PubMed  Google Scholar 

  10. Starzl, T. E. et al. The many faces of multivisceral transplantation. Surg. Gynecol. Obstet. 172, 335–344 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abu-Elmagd, K. M. et al. Evolution of the immunosuppressive strategies for the intestinal and multivisceral recipients with special reference to allograft immunity and achievement of partial tolerance. Transpl. Int. 22, 96–109 (2009).

    Article  PubMed  Google Scholar 

  12. Starzl, T. E. et al. FK 506 for human liver, kidney, and pancreas transplantation. Lancet 2, 1000–1004 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abu-Elmagd, K. M. in History of Organ and Cell Transplantation (eds Hakim, N. S. & Papalois, V. E.) 171–193 (Imperial College Press, 2003).

    Book  Google Scholar 

  14. Abu-Elmagd, K., Bond, G., Reyes, J. & Fung, J. Intestinal transplantation: a coming of age. Adv. Surg. 36, 65–101 (2002).

    PubMed  Google Scholar 

  15. Todo, S. et al. Outcome analysis of 71 clinical intestinal transplantations. Ann. Surg. 222, 270–280 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grant, D. International Intestinal Transplant Registry: current results of intestinal transplantation. Lancet 347, 1801–1803 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Abu-Elmagd, K. et al. Clinical intestinal transplantation: new perspectives and immunologic considerations. J. Am. Coll. Surg. 186, 512–525 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abu-Elmagd, K. M. et al. Five hundred intestinal and multivisceral transplantations at a single center: major advances with new challenges. Ann. Surg. 250, 567–581 (2009).

    PubMed  Google Scholar 

  19. Grant, D. et al. 2003 report of the intestine transplant registry: a new era has dawned. Ann. Surg. 241, 607–613 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grant, D. et al. Intestinal transplant registry Report: global availability of intestine transplantation with observed trends in clinical practice and graft survival. Am. J. Transplant. (in press).

  21. Matarese, L. E. et al. Short bowel syndrome: clinical guidelines for nutrition management. Nutr. Clin. Pract. 20, 493–502 (2005).

    Article  PubMed  Google Scholar 

  22. Abu-Elmagd, K. M. in Intestinal Failure: Diagnosis, Management and Transplantation (eds Langnas, A. N., Goulet, O., Quigley, E. M. & Tappenden, K. A.) 245–253 (Wiley-Blackwell, 2008).

    Google Scholar 

  23. Howard, L. & Hassan, N. Home parenteral nutrition: 25 years later. Clin. Nutr. 27, 481–512 (1998).

    CAS  Google Scholar 

  24. Williamson, R. C. N. Intestinal adaptation (first of two parts). Structural, functional and cytokinetic changes. N. Engl. J. Med. 298, 1393–1402 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Williamson, R. C. N. Intestinal adaptation (second of two parts). Mechanisms of control. N. Engl. J. Med. 298, 1444–1450 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Jeppesen, P. B. & Mortensen, P. B. Experimental approaches: dietary and hormone therapy. Best Pract. Res. Clin. Gastroenterol. 17, 1041–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Tappenden, K. Intestinal adaptation following resection. JPEN J. Parenter. Enteral Nutr. 38, 23S–31S (2014).

    Article  PubMed  Google Scholar 

  28. Squires, R. H. et al. Natural history of pediatric intestinal failure: initial report from the Pediatric Intestinal Failure Consortium. J. Pediatr. 16, 723–728.e722 (2012).

    Article  Google Scholar 

  29. Spencer, A. U. et al. Pediatric short bowel syndrome: redefining predictors of success. Ann. Surg. 242, 403–409 (2005).

    PubMed  PubMed Central  Google Scholar 

  30. Doldi, S. B. Intestinal adaptation following jejuno-ileal bypass. Clin. Nutr. 10, 138–145 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. McDuffle, L. A. et al. Intestinal adaptation after small bowel resection in human infants. J. Pediatr. Surg. 46, 1045–1051 (2011).

    Article  Google Scholar 

  32. Pondrom, S. The evolving field of gut rehabilitation. Am. J. Transplant. 14, 1227–1228 (2014).

    Article  PubMed  Google Scholar 

  33. Diamond, I. R., Pencharz, P. B. & Wales, P. W. Omega-3 lipids for intestinal failure associated liver disease. Semin. Pediatr. Surg. 18, 239–245 (2009).

    Article  PubMed  Google Scholar 

  34. Burns, D. L. & Gill, B. M. Reversal of parenteral nutrition-associated liver disease with a fish oil-based lipid emulsion (Omegaven) in an adult dependent on home parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 37, 274–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Seida, J. C. et al. Parenteral w-3 fatty acid lipid emulsions for children with intestinal failure and other conditions: a systemic review. JPEN J. Parenter. Enteral Nutr. 37, 44–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Matsumoto, C. S. et al. Hepatic explant pathology of pediatric intestinal transplant recipients previously treated with omega-e fatty acid lipid emulsion. J. Pediatr. 165, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Vipperla, K. & O'Keefe, S. J. Study of teduglutide effectiveness in parenteral nutrition-dependent short-bowel syndrome subjects. Expert Rev. Gastroenterol. Hepatol. 7, 683–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Jeppesen, P. B. et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastreoentology 143, 1473–1481 (2012).

    Article  CAS  Google Scholar 

  39. Arda-Pirinci, P. & Bolkent, S. The role of glucagon-like peptide-2 on apoptosis, cell proliferation, and oxidant-antioxidant system at a mouse model of intestinal injury induced by tumor necrosis factor-α/actinomycin D. Mol. Cell. Biochem. 305, 13–27 (2011).

    Article  CAS  Google Scholar 

  40. Rowland, K. J. & Brubaker, P. L. The 'cryptic' mechanism of action of glucagon-like peptide-2. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G1–G8 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Meier, J. J. et al. Glucagon-like peptide-2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology 130, 44–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Gottschalck, J. B. et al. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome. Scand. J. Gastroenterol. 43, 1304–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Bremholm, L. et al. The effect of glucagon-like peptide-2 on mesenteric blood flow and cardiac parameters in end-jejunostomy short bowel patients. Regul. Pept. 168, 32–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  45. Tzakis, A. G. et al. Intestinal and multivisceral autotransplantation for tumors of the root of the mesentery: long-term follow-up. Surgery 152, 82–89 (2012).

    Article  PubMed  Google Scholar 

  46. Kato, T. et al. Multivisceral ex vivo surgery for tumors involving celiac and superior mesenteric arteries. Am. J. Transplant. 12, 1323–1328 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Bianchi, A. Intestinal loop lengthening—a technique for increasing small intestinal length. J. Pediatr. Surg. 15, 145–151 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, H. et al. Serial transverse enteroplasty (STEP): a novel bowel lengthening procedure. J. Pediatr. Surg. 38, 425–429 (2003).

    Article  PubMed  Google Scholar 

  49. Abu-Elmagd, K. M. et al. Long-term survival, nutritional autonomy, and quality of life after intestinal and multivisceral transplantation. Ann. Surg. 256, 494–508 (2012).

    Article  PubMed  Google Scholar 

  50. Idoate, M. A. et al. The neuropathology of intestinal failure and small bowel transplantation. Acta Neuropathol. 97, 502–508 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Dekaban, A. S. Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann. Neurol. 4, 345–356 (1978).

    Article  CAS  PubMed  Google Scholar 

  52. El-Tatawy, S., Badrawi, N. & El Bishlawy, A. Cerebral atrophy in infants with protein energy malnutrition. AJNR Am. J. Neuroradiol. 4, 434–436 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawakubo, K. et al. Progressive encephalopathy in a Crohn's disease patient on long-term total parenteral nutrition: possible relationship to selenium deficiency. Postgrad. Med. J. 70, 215–219 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Todo, S. et al. Intestinal transplantation in composite visceral grafts or alone. Ann. Surg. 216, 223–234 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abu-Elmagd, K. A. et al. Three years clinical experience with intestinal transplantation. J. Am. Coll. Surg. 179, 385–400 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Grant, D. Intestinal transplantation: 1997 report of the international registry: Intestinal Transplant Registry. Transplantation 67, 1061–1064 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Abu-Elmagd, K. et al. Clinical intestinal transplantation: a decade of experience at a single center. Ann. Surg. 234, 404–416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abu-Elmagd, K. M. Intestinal transplantation for short bowel syndrome and gastrointestinal failure: current consensus, rewarding outcomes, and practical guidelines. Gastroenterology 130, S132–S137 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Kumar, A. R. et al. Proteomic analysis reveals innate immune activity in intestinal transplant dysfunction. Transplantation 92, 119–119 (2011).

    Article  CAS  Google Scholar 

  60. Oh, P. L. et al. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am. J. Transplant. 12, 753–762 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Li, Q. R. et al. Reciprocal interaction between intestinal microbiota and mucosal lymphocyte in cynomolgus monkeys after alemtuzumab treatment. Am. J. Transplant. 13, 899–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Girlanda, R. et al. Metabolomics of human intestinal transplant rejection. Am. J. Transplant. 12, S18–S26 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Hartman, A. L. et al. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc. Natl Acad. Sci. USA 106, 17187–17192 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Alegre, M. L., Mannon, R. B. & Mannon, P. J. The microbiota, the immune system and the allograft. Am. J. Transplant. 14, 1236–1248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wood, N. J. Potential of intestinal microbiota profile as a diagnostic biomarker of small bowel transplant rejection. Nat. Rev. Gastroenterol. Hepatol. 9, 61 (2012).

    Article  PubMed  Google Scholar 

  66. Mazariegos, G. V. et al. Pediatric intestinal retransplantation: techniques, management, and outcomes. Transplantation 86, 1777–1782 (2008).

    Article  PubMed  Google Scholar 

  67. Desai, C. S. et al. Intestinal retransplantation: analysis of Organ Procurement and Transplantation Network database. Transplantation 93, 120–125 (2012).

    Article  PubMed  Google Scholar 

  68. Cruz, R. J. Jr et al. Modified “liver-sparing” multivisceral transplant with preserved native spleen, pancreas, and duodenum: technique and long-term outcome. J. Gastrointest. Surg. 14, 1709–1721 (2010).

    Article  PubMed  Google Scholar 

  69. Lawrence, J. P. et al. Isolated liver transplantation for liver failure in patients with short bowel syndrome. J. Pediatr. Surg. 29, 751–753 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Vianna, R. M. et al. Multivisceral transplantation for diffuse portomesenteric thrombosis. Ann. Surg. 255, 1144–1150 (2012).

    Article  PubMed  Google Scholar 

  71. Costa, G. et al. in Surgical Clinics of North America (ed. Geller, D.) 891–905 (Elsevier Saunders, 2010).

    Google Scholar 

  72. Reyes, J. et al. Graft-versus-host disease after liver and small bowel transplantation in a child. Clin. Transplant. 11, 345–348 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fischer, R. T. et al. Intestinal transplantation in children with multiple intestinal atresias and immunodeficienty. Pediatr. Transplant. 18, 190–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Intestinal Transplant Report: Bi-Annual Report in Intestinal Transplant Registry (ed. Grant, D). (Intestinal Transplant Association, 2013).

  75. US Department of Health and Human Services. Data. Organ Procurement and Transplantation Network [online], (2014).

  76. Abu-Elmagd, K. M. in Textbook of Organ Transplantation 1st edn (eds Kirk, A., Knechtle, S., Larsen, C., Madsen, J. & Pearson, T.) 489–494 (Wiley-Blackwell, 2014).

    Google Scholar 

  77. US Department of Health and Human Services. Policies. Organ Procurement and Transplantation Network [online], (2014).

  78. Hashimoto, K. et al. Recent advances in intestinal and multivisceral transplantation. Adv. Surg. (in press).

  79. Abu-Elmagd, K. et al. Logistics and technique for procurement of intestinal, pancreatic, and hepatic grafts from the same donor. Ann. Surg. 232, 680–687 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cruz, R. J. Jr et al. Modified multivisceral transplantation with spleen-preserving pancreaticoduodenectomy for patients with familial adenomatous polyposis “Gardner's Syndrome”. Transplantation 91, 1417–1423 (2011).

    Article  PubMed  Google Scholar 

  81. Matsumoto, C. & Fishbein, T. M. Modified multivisceral transplantation with splenopancreatic preservation. Transplantation 83, 234–236 (2007).

    Article  PubMed  Google Scholar 

  82. Abu-Elmagd, K. M. Preservation of the native spleen, duodenum, and pancreas in patients with multivisceral transplantation: nomenclature, dispute of origin, and proof of premise. Transplantation 84, 1208–1209 (2007).

    Article  PubMed  Google Scholar 

  83. Mazariegos, G. V. et al. Intestine transplantation in the United States, 1999–2008. Am. J. Transplant. 10, 1020–1034 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Abu-Elmagd, K. M. The small bowel contained allografts: existing and proposed nomenclature. Am. J. Transplant. 11, 184–185 (2011).

    Article  PubMed  Google Scholar 

  85. Todo, S. et al. Small intestinal transplantation in humans with or without the colon. Transplantation 57, 840–848 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kato, T. et al. Inclusion of donor colon and ileocecal valve in intestinal transplantation. Transplantation 86, 293–297 (2008).

    Article  PubMed  Google Scholar 

  87. Tzakis, A. G. et al. 100 multivisceral transplants at a single center. Ann. Surg. 242, 480–490 (2005).

    PubMed  PubMed Central  Google Scholar 

  88. Kato, T. et al. Transplantation of the spleen: effect of splenic allograft in human multivisceral transplantation. Ann. Surg. 246, 436–444 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vakili, K. & Kim, H. B. Partial esophageal transplantation is possible as part of a multivisceral graft. Am. J. Transplant. 14, 720–723 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Hartog, H., Mirza, D. F. & Perera, M. T. Heterotaxy syndrome with malrotation of the gut and interrupted vena cava does not preclude safe procurement of multivisceral graft. Am. J. Transplant. 14, 724–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Eid, K. R. et al. An innovative sphincter preserving pull-through technique with en bloc colon and small bowel transplantation. Am. J. Transplant. 10, 1940–1946 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Carlsen, B. T. et al. Incidence and management of abdominal wall defects after intestinal and multivisceral transplantation. Plast. Reconstr. Surg. 119, 1247–1255 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Mangus, R. S. et al. Closure of the abdominal wall with acellular dermal allograft in intestinal transplantation. Am. J. Transplant. 12, S55–S59 (2012).

    Article  PubMed  Google Scholar 

  94. Watson, M. J. et al. Role of tissue expanders in patients with loss of abdominal domain awaiting intestinal transplantation. Transpl. Int. 26, 1184–1190 (2013).

    Article  PubMed  Google Scholar 

  95. Gondolesi, G. et al. Use of the abdominal rectus fascia as a nonvascularized allograft for abdominal wall closure after liver, intestinal, and multivisceral transplantation. Transplantation 87, 1884–1888 (2009).

    Article  PubMed  Google Scholar 

  96. Levi, D. M. et al. Transplantation of the abdominal wall. Lancet 361, 2173–2176 (2003).

    Article  PubMed  Google Scholar 

  97. Fishbein, T. M. Intestinal transplantation. N. Engl. J. Med. 361, 998–1008 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Berger, M. et al. Immunologic challenges in small bowel transplantation. Am. J. Transplant. 12, S2–S8 (2012).

    Article  PubMed  Google Scholar 

  99. Starzl, T. E. et al. Tolerogenic immunosuppression for organ transplantation. Lancet 361, 1502–1510 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Abu-Elmagd, K. et al. The efficacy of daclizumab for intestinal transplantation: preliminary report. Transplant. Proc. 32, 1195–1196 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Farmer, D. G. et al. Outcomes after intestinal transplantation: a single-center experience over a decade. Transplant. Proc. 34, 896–897 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Tzakis, A. G. et al. Preliminary experience with campath 1H (C1H) in intestinal and liver transplantation. Transplantation 75, 1227–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Fishbein, T. M. et al. Isolated intestinal transplantation: proof of clinical efficacy. Transplantation 76(4): 636–640 (2003).

    Article  PubMed  Google Scholar 

  104. Starzl, T. E. & Zinkernagel, R. M. Transplantation tolerance from a historical perspective. Nat. Rev. Immunol. 1, 233–239 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Abu-Elmagd, K. M. et al. A decade of experience with a single dose of rabbit antithymocyte globulin or alemtuzumab pretreatment for intestinal and multivisceral transplantation. Clin. Transpl. 2012, 155–166 (2012).

    Google Scholar 

  106. Bradley, J. A. Transplant tolerance by Treg therapy. Am. J. Transplant. 14, 5–6 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Wood, K. J., Bushnell, A. & Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12, 417–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Bayer, A. L. et al. T regulatory cell adoptive therapy for tolerance induction in autoimmunity and transplantion. Am. J. Transplant. 14, 2432–2433 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Porrett, P. M., Hashmi, S. K. & Shaked, A. Immunosuppression: trends and tolerance. Clin. Liver Dis. 18, 687–716 (2014).

    Article  PubMed  Google Scholar 

  110. Abu-Elmagd, K. M. et al. Lymphoproliferative disorders and de novo malignancies in intestinal and multivisceral recipients: improved outcomes with new outlooks. Transplantation 88, 926–934 (2009).

    Article  PubMed  Google Scholar 

  111. Intensive Care Society and the British Transplantation Society. Survival rates following transplantation. Organ Donation [online], (2014).

  112. Abu-Elmagd, K. M. et al. Preformed and de novo donor specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am. J. Transplant. 12, 3047–3060 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Abu-Elmagd, K., Reyes, J. & Fung, J. Transplantation of the human intestine: the forbidden organ. Curr. Opin. Organ Transplant. 3, 286–292 (1998).

    Google Scholar 

  114. Boehnert, M. U. et al. Normothermic acelluar ex vivo perfusion reduces liver and bile duct injury of pig livers retrieved after cardiac death. Am. J. Transplant. 13, 1441–1449 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Vogel, T., Brockman, J. G. & Friend, P. J. Ex-vivo normothermic liver perfusion: an update. Curr. Opin. Organ Transplant. 15, 167–172 (2010).

    Article  PubMed  Google Scholar 

  116. Sudan, D. et al. Assessment of quality of life after pediatric intestinal transplantation by parents and pediatric recipients using the child health questionnaire. Transplant. Proc. 34, 963–964 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Ngo, K. D. et al. Pediatric health-related quality of life after intestinal transplantation. Pediatr. Transplant. 15, 849–854 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. DiMartini, A. et al. Quality of life after small intestinal transplantation and among home parenteral nutrition patients. JPEN J. Parenter. Enteral Nutr. 22, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Rovera, G. M. et al. Quality of life of patients after intestinal transplantation. Transplantation 66, 1141–1145 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Rovera, G. M. et al. Quality of life after intestinal transplantation and on total parenteral nutrition. Transplant. Proc. 30, 2513–2514 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Stenn, P. G. et al. Psychiatric psychosocial and ethical aspects of small bowel transplantation. Transplant. Proc. 24, 1251–1252 (1992).

    CAS  PubMed  Google Scholar 

  122. Cameron, E. A. et al. Quality of life in adults following small bowel transplantation. Transplant. Proc. 34, 965–966 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Pironi, L. et al. Quality of life on home parenteral nutrition or after intestinal transplantation. Transplant. Proc. 38, 1673–1675 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Sudan, D. L. et al. Assessment of function, growth and development, and long-term quality of life after small bowel transplantation. Transplant. Proc. 32, 1211–1212 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Golfieri, L. et al. Psychological adaptation and quality of life of adult intestinal transplant recipients: University of Bologna experience. Transplant. Proc. 42, 42–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. O'Keefe, S. J. et al. Nutrition and quality of life following small intestinal transplantation. Am. J. Gastroenterol. 102, 1093–1100 (2007).

    Article  PubMed  Google Scholar 

  127. Pironi, L. et al. Assessment of quality of life on home parenteral nutrition and after intestinal transplantation using treatment-specific questionnaires. Am. J. Transplant. 12, S60–S66 (2012).

    Article  PubMed  Google Scholar 

  128. Iwaki, Y. et al. Replacement of donor lymphoid tissue in human small bowel transplants under FK-506 immunosuppression. Lancet 331, 818 (1991).

    Article  Google Scholar 

  129. Mazariegos, G. V. et al. Graft versus host disease in intestinal transplantation. Am. J. Transplant. 4, 1459–1465 (2004).

    Article  PubMed  Google Scholar 

  130. Wu, G. et al. Graft-versus-host disease after intestinal and multivisceral transplantation. Transplantation 91, 219–224 (2011).

    Article  PubMed  Google Scholar 

  131. Shin, C. R. et al. Incidence of acute and chronic graft-versus-host disease and donor T-cell chimerism after small bowel or combined organ transplantation. J. Pediatr. Surg. 46, 1732–1738 (2011).

    Article  PubMed  Google Scholar 

  132. Andres, A. M. et al. Graft-vs-host disease after small bowel transplantation in children. J. Pediatr. Surg. 45, 330–336 (2010).

    Article  PubMed  Google Scholar 

  133. Hibi, T. et al. Citrulline level is a potent indicator of acute rejection in the long term following pediatric intestinal/multivisceral transplantation. Am. J. Transplant. 12, S27–S32 (2012).

    Article  PubMed  Google Scholar 

  134. Sudan, D. et al. Calprotectin: a novel noninvasive marker for intestinal allograft monitoring. Ann. Surg. 246, 311–315 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sindhi, R. et al. Allospecific CD154+ T-cytotoxic memory cells as potential surrogate for rejection risk in pediatric intestine transplantation. Pediatr. Transplant. 16, 83–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Alvarez, S. et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation. Transplant. Proc. 45, 3719–3723 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Fleissner, F. A. et al. Microvesicles as novel biomarkers and therapeutic targets in transplantation medicine. Am. J. Transplant. 12, 289–297 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Gilroy, R. K. et al. Donor immune reconstitution after liver-small bowel transplantation for multiple intestinal atresia with immunodeficiency. Blood 103, 1171–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Rizzi, M. et al. Outcome of allogeneic stem cell transplantation in adults with common variable immunodeficiency. J. Allergy Clin. Immunol. 128, 1371–1374 (2011).

    Article  PubMed  Google Scholar 

  140. Murase, N. et al. Variable chimerism, graft versus host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to Brown-Norway rats. Transplantation 60, 158–171 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Starzl, T. et al. in Transplantation of the Liver (eds Busuttil, R. W. & Klintmalm, G. B.) (in press) (Elsevier, PA, 2014)

    Google Scholar 

  142. Stegall, M. D. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 11, 2405–2413 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Fishbein, T. et al. NOD2-expressing bone marrow-derived cells appear to regulate epithelial innate immunity of the transplanted human small intestine. Gut 57, 323–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Abu-Elmagd, K. M. et al. Evolution of clinical intestinal transplantation: improved outcome and cost effectiveness. Transplant. Proc. 31, 582–584 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Belchoir, G. G., Sogayar, M. C. & Grikscheit, T. C. Stem cells and biopharmaceuticals: vitals roles in the growth of tissue-engineered small intestine. Semin. Pediatr. Surg. 23, 141–149 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kareem Abu-Elmagd.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Figures 1-4

Supplementary Figures (PDF 461 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Elmagd, K. The concept of gut rehabilitation and the future of visceral transplantation. Nat Rev Gastroenterol Hepatol 12, 108–120 (2015). https://doi.org/10.1038/nrgastro.2014.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing