Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Barrett oesophagus: lessons on its origins from the lesion itself

Abstract

Barrett oesophagus develops when the lower oesophageal squamous epithelium is replaced with columnar epithelium, which shows both intestinal and gastric differentiation. No consensus has been reached on the origin of Barrett oesophagus. Theories include a direct origin from the oesophageal-stratified squamous epithelium, or by proximal migration of the gastric cardiac epithelium with subsequent intestinalization. Variations of this theory suggest the origin is a distinctive cell at the squamocolumnar junction, the oesophageal gland ducts, or circulating bone-marrow-derived cells. Much of the supporting evidence comes from experimental models and not from studies of Barrett mucosa. In this Perspectives article, we look at the Barrett lesion itself: at its phenotype, its complexity, its clonal architecture and its stem cell organization. We conclude that Barrett glands are unique structures, but share many similarities with gastric glands undergoing the process of intestinal metaplasia. We conclude that current evidence most strongly supports an origin from stem cells in the cardia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of a typical Barrett gland.
Figure 2: Phenotypes seen in Barrett epithelium.
Figure 3: Niche succession and gland fission in Barrett oesophagus and intestinal metaplasia of the stomach.
Figure 4: The potential sources of Barrett epithelium.
Figure 5: Morphologic evolution of the glandular phenotype along the length of a Barrett segment.

Similar content being viewed by others

References

  1. Haggitt, R., C. Adenocarcinoma in Barrett's esophagus: a new epidemic? Hum. Pathol. 23, 475–476 (1992).

    CAS  PubMed  Google Scholar 

  2. Xian, W., Ho, K. Y., Crum, C. P. & McKeon, F. Cellular origin of Barrett's esophagus: controversy and therapeutic implications. Gastroenterology 142, 1424–1430 (2012).

    PubMed  Google Scholar 

  3. Jass, J. R. Mucin histochemistry of the columnar epithelium of the oesophagus: a retrospective study. J. Clin. Pathol. 34, 866–870 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, G. S. et al. Distinction between short-segment Barrett's esophageal and cardiac intestinal metaplasia. World J. Gastroenterol. 11, 6360–6365 (2005).

    PubMed  PubMed Central  Google Scholar 

  5. Hahn, H. P. et al. Intestinal differentiation in metaplastic, non-goblet columnar epithelium in the esophagus. Am. J. Surg. Pathol. 33, 1006–1015 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Spechler, S. J. Barrett's esophagus: is the goblet half empty? Clin. Gastroenterol. Hepatol. 10, 1237–1238 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Bansal, A. et al. Presence or absence of intestinal metaplasia but not its burden is associated with prevalent high-grade dysplasia and cancer in Barrett's esophagus. Dis. Esophagus http://dx.doi.org/10.1111/dote.12151.

  8. Westerhoff, M., Hovan, L., Lee, C. & Hart, J. Effects of dropping the requirement for goblet cells from the diagnosis of Barrett's esophagus. Clin. Gastroenterol. Hepatol. 10, 1232–1236 (2012).

    PubMed  Google Scholar 

  9. Riddell, R. H. & Odze, R. D. Definition of Barrett's esophagus: time for a rethink—is intestinal metaplasia dead? Am. J. Gastroenterol. 104, 2588–2594 (2009).

    PubMed  Google Scholar 

  10. Fitzgerald, R. C. et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut 63, 7–42 (2014).

    PubMed  Google Scholar 

  11. von Rahden, B. H., Stein, H. J. & Siewert, J. R. Barrett's esophagus and Barrett's carcinoma. Curr. Oncol. Rep. 5, 203–209 (2003).

    PubMed  Google Scholar 

  12. Mahajan, D., Bennett, A. E., Liu, X., Bena, J. & Bronner, M. P. Grading of gastric foveolar-type dysplasia in Barrett's esophagus. Mod. Pathol. 23, 1–11 (2010).

    PubMed  Google Scholar 

  13. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldblum, J. R. Barrett's esophagus and Barrett's-related dysplasia. Mod. Pathol. 16, 316–324 (2003).

    PubMed  Google Scholar 

  15. Haggitt, R. C. Barrett's esophagus, dysplasia and adenocarcinoma. Hum. Pathol. 25, 982–993 (1994).

    CAS  PubMed  Google Scholar 

  16. Weinstein, W. M. & Ippoliti, A. F. The diagnosis of Barrett's esophagus. Goblets, goblets, goblets. Gastrointest. Endosc. 44, 91–94 (1996).

    CAS  PubMed  Google Scholar 

  17. Sampliner, R. E. Practice guidelines on the diagnosis, surveillance and therapy of Barrett's esophagus. Am. J. Gastroenterol. 93, 1028–1031 (1998).

    CAS  PubMed  Google Scholar 

  18. Lee, R. G. Mucins in Barrett's esophagus: a histochemical study. Am. J. Clin. Pathol. 81, 500–503 (1984).

    CAS  PubMed  Google Scholar 

  19. Chen, Y. Y. et al. Significance of acid-mucin-positive non-goblet columnar cells in the distal esophagus and gastroesophageal junction. Hum. Pathol. 30, 1488–1495 (1999).

    CAS  PubMed  Google Scholar 

  20. Rouzier, R. & Robine, S. The subtleties of intestinal metaplasia. Gut 49, 8 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Duchatelle, V., Potet, F., Bara, J., Ma, J. & Goldfain, D. Mucin immunohistochemistry of the columnar epithelium of the oesophagus (Barrett's oesophagus). Virchows Arch. A Pathol. Anat. Histopathol. 414, 359–363 (1989).

    CAS  PubMed  Google Scholar 

  22. Jauregui, H. O., Davessar, K., Hale, J. H. Kessimian, N. & Cenoz, C. Mucin histochemistry of intestinal metaplasia in Barrett's esophagus. Mod. Pathol. 1, 188–192 (1988).

    CAS  PubMed  Google Scholar 

  23. Lapertosa, G., Baracchini, P. & Fulcheri, E. Mucin histochemical analysis in the interpretation of Barrett's esophagus. Results of a multicenter study. The Operative Group for the Study of Esophageal Precancer. Am. J. Clin. Pathol. 98, 61–66 (1992).

    CAS  PubMed  Google Scholar 

  24. Torrado, J. et al. Blood-group phenotypes, sulfomucins, and Helicobacter pylori in Barrett's esophagus. Am. J. Surg. Pathol. 21, 1023–1029 (1997).

    CAS  PubMed  Google Scholar 

  25. Glickman, J. N. et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett's esophagus. Hum. Pathol. 37, 1304–1315 (2006).

    CAS  PubMed  Google Scholar 

  26. Hanby, A. M., Jankowski, J. A., Elia, G. Poulsom, R. & Wright, N. A. Expression of the trefoil peptides pS2 and human spasmolytic polypeptide (hSP) in Barrett's metaplasia and the native oesophageal epithelium: delineation of epithelial phenotype. J. Pathol. 173, 213–219 (1994).

    CAS  PubMed  Google Scholar 

  27. Van De Bovenkamp, J. H. et al. Gastric-type mucin and TFF-peptide expression in Barrett's oesophagus is disturbed during increased expression of MUC2. Histopathology 42, 555–565 (2003).

    CAS  PubMed  Google Scholar 

  28. Peitz, U. et al. TFF3 expression at the esophagogastric junction is increased in gastro-esophageal reflux disease (GERD). Peptides 25, 771–777 (2004).

    CAS  PubMed  Google Scholar 

  29. McIntire, M. G., Soucy, G., Vaughan, T. L., Shahsafaei, A. & Odze, R. D. MUC2 is a highly specific marker of goblet cell metaplasia in the distal esophagus and gastro-esophageal junction. Am. J. Surg. Pathol. 35, 1007–1013 (2011).

    PubMed  Google Scholar 

  30. Reis, C. A. et al. Intestinal metaplasia of human stomach displays distinct patterns of mucin (MUC1, MUC2, MUC5AC, and MUC6) expression. Cancer Res. 59, 1003–1007 (1999).

    CAS  PubMed  Google Scholar 

  31. White, N. M. et al. Barrett's esophagus and cardiac intestinal metaplasia: two conditions within the same spectrum. Can. J. Gastroenterol. 22, 369–375 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Oh, D. S. et al. The gene expression profile of cardia intestinal metaplasia is similar to that of Barrett's esophagus, not gastric intestinal metaplasia. Dis. Esophagus 24, 516–522 (2011).

    CAS  PubMed  Google Scholar 

  33. Srivastava, S. et al. Immunohistochemical analysis of metaplastic non-goblet columnar lined oesophagus shows phenotypic similarities to Barrett's oesophagus: a study in an Asian population. Dig. Liver Dis. 46, 170–175 (2014).

    PubMed  Google Scholar 

  34. Rindi, G. et al. A mixed pattern of endocrine cells in metaplastic Barrett's oesophagus. Evidence that the epithelium derives from a pluripotential stem cell. Histochemistry 87, 377–383 (1987).

    CAS  PubMed  Google Scholar 

  35. Otsuka, T. et al. Coexistence of gastric- and intestinal-type endocrine cells in gastric and intestinal mixed intestinal metaplasia of the human stomach. Pathol. Int. 55, 170–179 (2005).

    PubMed  Google Scholar 

  36. Paull, A. et al. The histologic spectrum of Barrett's esophagus. N. Engl. J. Med. 295, 476–480 (1976).

    CAS  PubMed  Google Scholar 

  37. Burke, Z. D. & Tosh, D. Barrett's metaplasia as a paradigm for understanding the development of cancer. Curr. Opin. Genet. Dev. 22, 494–499 (2012).

    CAS  PubMed  Google Scholar 

  38. Filipe, M. I. & Jass, J. R. in Gastric Carcinoma (eds Filipe, M. I. & Jass, J. R.) 87–115 (Churchill Livingstone London, 1986).

    Google Scholar 

  39. Solcia, E. et al. Intestinal and diffuse gastric cancers arise in a different background of Helicobacter pylori gastritis through different gene involvement. Am. J. Surg. Pathol. 20 (Suppl. 1), S8–S22 (1996).

    PubMed  Google Scholar 

  40. Tanaka, H. et al. Expression of small intestinal and colonic phenotypes in complete intestinal metaplasia of the human stomach. Virchows Arch. 447, 806–815 (2005).

    CAS  PubMed  Google Scholar 

  41. Tatematsu, M., Tsukamoto, T. & Inada, K. Stem cells and gastric cancer: role of gastric and intestinal mixed intestinal metaplasia. Cancer Sci. 94, 135–141 (2003).

    CAS  PubMed  Google Scholar 

  42. Tsukamoto, T., Mizoshita, T. & Tatematsu, M. Gastric-and-intestinal mixed-type intestinal metaplasia: aberrant expression of transcription factors and stem cell intestinalization. Gastric Cancer 9, 156–166 (2006).

    CAS  PubMed  Google Scholar 

  43. Correa, P., Piazuelo, M. B. & Wilson, K. T. Pathology of gastric intestinal metaplasia: clinical implications. Am. J. Gastroenterol. 105, 493–498 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Gottfried, M. R., McClave, S. A. & Boyce, H. W. Incomplete intestinal metaplasia in the diagnosis of columnar-lined esophagus (Barrett's esophagus). Am. J. Clin. Pathol. 42, 741–746 (1989).

    Google Scholar 

  45. Chandrasoma, P. T. et al. Distribution and significance of epithelial types in columnar-lined esophagus. Am. J. Surg. Pathol. 25, 1188–1193 (2001).

    CAS  PubMed  Google Scholar 

  46. Thompson, J. J., Zinsser, K. R. & Enterline, H. T. Barrett's metaplasia and adenocarcinoma of the esophagus and gastroesophageal junction. Hum. Pathol. 14, 42–60 (1983).

    CAS  PubMed  Google Scholar 

  47. Theodorou, D. et al. Intraluminal pH and goblet cell density in Barrett's esophagus. J. Gastrointest. Surg. 16, 469–474 (2012).

    PubMed  Google Scholar 

  48. Going, J. J. et al. Zoning of mucosal phenotype, dysplasia, and telomerase activity measured by telomerase repeat assay protocol in Barrett's esophagus. Neoplasia 6, 85–92 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stairs, D. B. et al. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus. PLoS ONE 3, e3534 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. Slack, J. M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat. Rev. Mol. Cell Biol. 8, 369–378 (2007).

    CAS  PubMed  Google Scholar 

  51. Slack, J. M. Epithelial metaplasia and the second anatomy. Lancet 2, 268–271 (1986).

    CAS  PubMed  Google Scholar 

  52. Okada, T. S. Transdifferentiation: flexibility in cell differentiation (Clarendon Press, 1991).

    Google Scholar 

  53. Nomura, S., Kaminishi, M., Sugiyama, K., Oohara, T. & Esumi, H. Clonal analysis of isolated single fundic and pyloric gland of stomach using X-linked polymorphism. Biochem. Biophys. Res. Commun. 226, 385–390 (1996).

    CAS  PubMed  Google Scholar 

  54. Nomura, S., Kaminishi, M., Sugiyama, K., Oohara, T. & Esumi, H. Clonal analysis of isolated intestinal metaplastic glands of stomach using X linked polymorphism. Gut 42, 663–668 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mihara, M. et al. Methylation of multiple genes in gastric glands with intestinal metaplasia: a disorder with polyclonal origins. Am. J. Pathol. 169, 1643–1651 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gutierrez-Gonzalez, L. et al. The clonal origins of dysplasia from intestinal metaplasia in the human stomach. Gastroenterology 140, 1251–1260 (2011).

    CAS  PubMed  Google Scholar 

  57. Nicholson, A. M. et al. Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut 61, 1380–1389 (2011).

    PubMed  Google Scholar 

  58. Niwa, T. et al. Mixed gastric- and intestinal-type metaplasia is formed by cells with dual intestinal and gastric differentiation. J. Histochem. Cytochem. 53, 75–85 (2005).

    CAS  PubMed  Google Scholar 

  59. El-Zimaity, H. M., Ramchatesingh, J., Ali Saeed, M. & Graham, D. Y. Gastric intestinal metaplasia: subtypes and natural history. J. Clin. Pathol. 54, 679–683 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Greaves, L. C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl Acad. Sci. USA 103, 714–719 (2006).

    CAS  PubMed  Google Scholar 

  61. McDonald, S. A. et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134, 500–510 (2008).

    CAS  PubMed  Google Scholar 

  62. Milind, R. & Attwood, S. E. Natural history of Barrett's esophagus. World J. Gastroenterol. 18, 3483–3491 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Barrett, M. T. et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat. Genet. 22, 106–109 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong, D. J. et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett's metaplastic epithelium. Cancer Res. 61, 8284–8289 (2001).

    CAS  PubMed  Google Scholar 

  65. Glickman, J. N., Shahsafaei, A. & Odze, R. D. Mucin core peptide expression can help differentiate Barrett's esophagus from intestinal metaplasia of the stomach. Am. J. Surg. Pathol. 27, 1357–1365 (2003).

    PubMed  Google Scholar 

  66. Montgomery, E. in Barrett's Esophagus Vol. 1 (ed. Guili, R.) 41 (John Libbey Eurotext Ltd, 2003).

    Google Scholar 

  67. Moyes, L. H. et al. Activation of Wnt signalling promotes development of dysplasia in Barrett's oesophagus. J. Pathol. 228, 99–112 (2012).

    CAS  PubMed  Google Scholar 

  68. Going, J. J. et al. Aberrant expression of minichromosome maintenance proteins 2 and 5, and Ki-67 in dysplastic squamous oesophageal epithelium and Barrett's mucosa. Gut 50, 373–377 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lavery, D. L. The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands. Gut http://dx.doi.org/10.1136/gutjnl-2013-306508.

  70. Wright, N. A. & Alison, M. R. in The Biology of Epithelial Cell Populations Vol. 2 645–652 (Oxford University Press, 1984).

    Google Scholar 

  71. Watari, J. et al. K-ras mutations and cell kinetics in Helicobacter pylori associated gastric intestinal metaplasia: a comparison before and after eradication in patients with chronic gastritis and gastric cancer. Clin. Pathol. 60, 921–926 (2007).

    CAS  Google Scholar 

  72. Humphries, A. & Wright, N. A. Colonic crypt organization and tumorigenesis. Nat. Rev. Cancer 8, 415–424 (2008).

    CAS  PubMed  Google Scholar 

  73. Novelli, M. R. et al. Polyclonal origin of colonic adenomas in an XO/XY patient with FAP. Science 272, 1187–1190 (1996).

    CAS  PubMed  Google Scholar 

  74. Novelli, M. et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc. Natl Acad. Sci. USA 100, 3311–3314 (2003).

    CAS  PubMed  Google Scholar 

  75. Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351–1360 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gutierrez-Gonzalez, L. et al. Analysis of the clonal architecture of the human small intestinal epithelium establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J. Pathol. 217, 489–496 (2009).

    CAS  PubMed  Google Scholar 

  77. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS  PubMed  Google Scholar 

  78. Bobryshev, Y. V. et al. Expression of the putative stem cell marker Musashi-1 in Barrett's esophagus and esophageal adenocarcinoma. Dis. Esophagus 23, 580–589 (2010).

    CAS  PubMed  Google Scholar 

  79. Vega, K. J. et al. Identification of the putative intestinal stem cell marker doublecortin and CaM kinase-like-1 in Barrett's esophagus and esophageal adenocarcinoma. J. Gastroenterol. Hepatol. 27, 773–780 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Barker, N. et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    CAS  PubMed  Google Scholar 

  81. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    CAS  PubMed  Google Scholar 

  82. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    CAS  PubMed  Google Scholar 

  83. Merlos-Suárez, A. et al. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8, 511–524 (2011).

    PubMed  Google Scholar 

  84. Becker, L., Huang, Q. & Mashimo, H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. ScientificWorldJournal 8, 1168–1176 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Becker, L., Huang, Q. & Mashimo, H. Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett's esophagus and esophageal adenocarcinoma. Dis. Esophagus 23, 168–174 (2010).

    CAS  PubMed  Google Scholar 

  86. von Rahden, B. H. et al. LgR5 expression and cancer stem cell hypothesis: clue to define the true origin of esophageal adenocarcinomas with and without Barrett's esophagus? J. Exp. Clin. Cancer Res. 30, 23 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Kemper, K. et al. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells 30, 2378–2386 (2012).

    CAS  PubMed  Google Scholar 

  88. Itzkovitz, S. et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat. Cell Biol. 14, 106–114 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Tytgat, G. N. J. in Barrett's Esophagus Vol. 1 (ed. Guili, R.) 73–77 (John Libbey Eurotext Ltd, 2003).

    Google Scholar 

  90. Cameron, A. J. & Lomboy, C. T. Barrett's esophagus: age, prevalence, and extent of columnar epithelium. Gastroenterology 103, 1241–1245 (1992).

    CAS  PubMed  Google Scholar 

  91. Parekh, D. et al. in Barrett's Esophagus Vol. 1 (ed. Guili, R.) 25 (John Libbey Eurotext Ltd, 2003).

    Google Scholar 

  92. Öberg, S. et al. The extent of Barrett's esophagus depends on the status of the lower esophageal sphincter and the degree of esophageal acid exposure. J. Thorac. Cardiovasc. Surg. 117, 572–580 (1999).

    PubMed  Google Scholar 

  93. Nandurkar, S. & Talley, N. J. Barrett's esophagus: the long and the short of it. Am. J. Gastroenterol. 94, 30 (1999).

    CAS  PubMed  Google Scholar 

  94. Benipal, P. et al. Short segment Barrett's esophagus: relationship of age with extent of intestinal metaplasia. Am. J. Gastroenterol. 96, 3084–3088 (2001).

    CAS  PubMed  Google Scholar 

  95. Manabe, N. et al. Does short-segment columnar-lined esophagus elongate during a mean follow-up period of 5.7 years. Dig. Endosc. 23, 166–172 (2011).

    PubMed  Google Scholar 

  96. Gatenby, P. A., Ramus, J. R., Caygill, C. P. & Watson, A. Does the length of the columnar-lined esophagus change with time? Dis. Esophagus 20, 497–503 (2007).

    CAS  PubMed  Google Scholar 

  97. Winberg, H., Lindblad, M., Lagergren, J. & Dahlstrand, H. Risk factors and chemoprevention in Barrett's esophagus—an update. Scand. J. Gastroenterol. 47, 397–406 (2012).

    CAS  PubMed  Google Scholar 

  98. Reid, B. J., Kostadinov, R. & Maley, C. C. New strategies in Barrett's esophagus: integrating clonal evolutionary theory with clinical management. Clin. Cancer Res. 17, 3512–3519 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

    CAS  PubMed  Google Scholar 

  100. Savarino, V., Di Mario, F. & Scarpignato, C. Proton pump inhibitors in GORD. An overview of their pharmacology, efficacy and safety. Pharmacol. Res. 59, 135–153 (2009).

    CAS  PubMed  Google Scholar 

  101. Maley, C. C., Reid, B. J. & Forrest, S. Cancer prevention strategies that address the evolutionary dynamics of neoplastic cells: simulating benign cell boosters and selection for chemosensitivity. Cancer Epidemiol. Biomarkers Prev. 13, 1375–1384 (2004).

    PubMed  Google Scholar 

  102. Zeki, S. S., McDonald, S. A. & Graham, T. A. Field cancerization in Barrett's esophagus. Discov. Med. 12, 371–379 (2011).

    PubMed  Google Scholar 

  103. Zeki, S. S. et al. Clonal selection and persistence in dysplastic Barrett's esophagus and intramucosal cancers after failed radiofrequency ablation. Am. J. Gastroenterol. 108, 1584–1592 (2013).

    PubMed  Google Scholar 

  104. Eguchi, G. & Kodama, R. Transdifferentiation. Curr. Opin. Cell Biol. 5, 1023–1028 (1993).

    CAS  PubMed  Google Scholar 

  105. Sarosi, G. et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett's esophagus. Dis. Esophagus 21, 43–50 (2008).

    CAS  PubMed  Google Scholar 

  106. Hutchinson, L. et al. Human Barrett's adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev. 20, 11–17 (2011).

    CAS  PubMed  Google Scholar 

  107. Wang, X. et al. Residual embryonic cells as precursors of a Barrett's-like metaplasia. Cell 145, 1023–1035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang, C. L. et al. Retinoic acid-induced glandular differentiation of the oesophagus. Gut 56, 906–917 (2007).

    CAS  PubMed  Google Scholar 

  109. Souza, R. F., Krishnan, K. & Spechler, S. J. Acid, bile, and CDX: the ABCs of making Barrett's metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G211–G218 (2008).

    CAS  PubMed  Google Scholar 

  110. Johns, B. A. Developmental changes in the oesophageal epithelium in man. J. Anat. 86, 431–442 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Riddell, R. H. The genesis of Barrett esophagus: has a histologic transition from gastroesophageal reflux disease-damaged epithelium to columnar metaplasia ever been seen in humans? Arch. Pathol. Lab. Med. 129, 164–169 (2005).

    PubMed  Google Scholar 

  112. Glickman, J. N., Chen, Y. Y. Wang, H. H., Antonioli, D. A. & Odze, R. D. Phenotypic characteristics of a distinctive multilayered epithelium suggests that it is a precursor in the development of Barrett's esophagus. Am. J. Surg. Pathol. 25, 569–578 (2001).

    CAS  PubMed  Google Scholar 

  113. Boch, J. A. et al. Distribution of cytokeratin markers in Barrett's specialized columnar epithelium. Gastroenterology 112, 760–765 (1997).

    CAS  PubMed  Google Scholar 

  114. Glickman, J. N., Yang, A., Shahsafaei, A. McKeon, F. & Odze, R. D. Expression of p53-related protein p63 in the gastrointestinal tract and in esophageal metaplastic and neoplastic disorders. Hum. Pathol. 32, 1157–1165 (2001).

    CAS  PubMed  Google Scholar 

  115. Shields, H. M. et al. Prospective evaluation of multilayered epithelium in Barrett's esophagus. Am. J. Gastroenterol. 96, 3268–3273 (2001).

    CAS  PubMed  Google Scholar 

  116. Upton, M. P. et al. Multilayered epithelium may be found in patients with Barrett's epithelium and dysplasia or adenocarcinoma. Dig Dis. Sci. 51, 1783–1790 (2006).

    PubMed  Google Scholar 

  117. Langner, C. et al. Multilayered epithelium at the gastroesophageal junction is a marker of gastroesophageal reflux disease: data from a prospective Central European multicenter study (histoGERD trial). Virchows Arch. 464, 409–417 (2014).

    PubMed  Google Scholar 

  118. Al Yassin, T. M. & Toner, P. G. Fine structure of squamous epithelium and submucosal glands of human oesophagus. J. Anat. 123, 705–721 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hopwood, D., Coghill, G. & Sanders, D. S. Human oesophageal submucosal glands. Their detection mucin, enzyme and secretory protein content. Histochemistry 86, 107–112 (1986).

    CAS  PubMed  Google Scholar 

  120. Fellous, T. G. et al. A methodological approach to tracing cell lineage in human epithelial tissues. Stem Cells 27, 1410–1420 (2009).

    CAS  PubMed  Google Scholar 

  121. Leedham, S. J. et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's oesophagus. Gut 57, 1041–1048 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ahnen, D. J. et al. The ulceration-associated cell lineage (UACL) reiterates the Brunner's gland differentiation programme but acquires the proliferative organization of the gastric gland. J. Pathol. 173, 317–326 (1994).

    CAS  PubMed  Google Scholar 

  123. Huang, Q. & Zhang, L. Histopathologic features of esophageal glands in the region of the gastroesophageal junction in Chinese patients with gastric cardiac cancer involving the esophagus. Pathol. Lab. Med. Int. 2, 33–40 (2010).

    Google Scholar 

  124. Rouse, R. V. et al. Esophageal submucosal gland duct adenoma. Am. J. Surg. Pathol. 19, 1191–1196 (1995).

    CAS  PubMed  Google Scholar 

  125. Takubo, K., Esaki, Y., Watanabe, A., Umehara, M. & Sasajima, K. Adenoma accompanied by superficial squamous cell carcinoma of the esophagus. Cancer 71, 2435–2438 (1993).

    CAS  PubMed  Google Scholar 

  126. Endoh, Y., Miyawaki, M., Tamura, G., Watanabe, H. & Motoyama, T. Esophageal adenocarcinoma that probably originated in the esophageal gland duct: a case report. Pathol. Int. 49, 156–159 (1999).

    CAS  PubMed  Google Scholar 

  127. Berenson, M. M., Johnson, T. D., Markowitz, N. R., Buchi, K. N. & Samowitz, W. S. Restoration of squamous mucosa after ablation of Barrett's esophageal epithelium. Gastroenterology 104, 1686–1691 (1993).

    CAS  PubMed  Google Scholar 

  128. Biddlestone, L. R., Barham, C. P., Wilkinson, S. P., Barr, H. & Shepherd, N. A. The histopathology of treated Barrett's esophagus: squamous reepithelialization after acid suppression and laser and photodynamic therapy. Am. J. Surg. Pathol. 22, 239–245 (1998).

    CAS  PubMed  Google Scholar 

  129. Wilkinson, S. P., Biddlestone, L., Gore, S. & Shepherd, N. A. Regression of columnar-lined (Barrett's) oesophagus with omeprazole 40 mg daily: results of 5 years of continuous therapy. Aliment. Pharmacol. Ther. 13, 1205–1209 (1999).

    CAS  PubMed  Google Scholar 

  130. Sampliner, R. E., Steinbronn, K., Garewal, H. S. & Riddell, R. H. Squamous mucosa overlying columnar epithelium in Barrett's esophagus in the absence of anti-reflux surgery. Am. J. Gastroenterol. 83, 510–512 (1988).

    CAS  PubMed  Google Scholar 

  131. Gudas, L. J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta 1821, 213–221 (2012).

    CAS  PubMed  Google Scholar 

  132. Paulson, T. G. et al. Neosquamous epithelium does not typically arise from Barrett's epithelium. Clin. Cancer Res. 15, 1701–1706 (2006).

    Google Scholar 

  133. Chen, X. & Yang, C. S. Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis 22, 1119–1129 (2001).

    CAS  PubMed  Google Scholar 

  134. Coad, R. A. et al. On the histogenesis of Barrett's oesophagus and its associated squamous islands: a three-dimensional study of their morphological relationship with native oesophageal gland ducts. J. Pathol. 206, 388–394 (2005).

    PubMed  Google Scholar 

  135. Lörinc, E. & Oberg, S. Submucosal glands in the columnar-lined oesophagus: evidence of an association with metaplasia and neosquamous epithelium. Histopathology 61, 53–58 (2012).

    PubMed  Google Scholar 

  136. Wright, N. A. Migration of the ductular elements of gut-associated glands gives clues to the histogenesis of structures associated with responses to acid hypersecretory state: the origins of “gastric metaplasia” in the duodenum of the specialized mucosa, of Barrett's esophagus and of pseudopyloric metaplasia. Yale J. Biol. Med. 69, 147–153 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Guillem, P. G. How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig. Dis. Sci. 50, 415–424 (2005).

    PubMed  Google Scholar 

  138. Kerkhof, M. et al. Does CDX2 expression predict Barrett's metaplasia in oesophageal columnar epithelium without goblet cells? Aliment. Pharmacol. Ther. 24, 1613–1621 (2006).

    CAS  PubMed  Google Scholar 

  139. DeMeester, S. R. & DeMeester, T. R. Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann. Surg. 231, 303–321 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chandrasoma, P. T., Der, R., Ma, Y., Peters, J. & Demeester, T. Histologic classification of patients based on mapping biopsies of the gastroesophageal junction. Am. J. Surg. Pathol. 27, 929–936 (2003).

    PubMed  Google Scholar 

  141. Dunn, L. J., Shenfine, J. & Griffin, S. M. Columnar metaplasia in the esophageal remnant after esophagectomy: a systematic review. Dis. Esophagus http://dx.doi.org/10.1111/dote.12129.

  142. Meyer, W., Vollmar, F. & Bär, W. Barrett-esophagus following total gastrectomy. A contribution to its pathogenesis. Endoscopy 11, 121–126 (1979).

    CAS  PubMed  Google Scholar 

  143. Oberg, S., Johansson, J., Wenner, J. & Walther, B. Metaplastic columnar mucosa in the cervical esophagus after esophagectomy. Ann. Surg. 235, 338–345 (2002).

    PubMed  PubMed Central  Google Scholar 

  144. Lord, R. V. et al. Cardiac mucosa in the remnant esophagus after esophagectomy is an acquired epithelium with Barrett's-like features. Surgery 136, 633–640 (2004).

    PubMed  Google Scholar 

  145. Dresner, S. M. et al. Human model of duodenogastro-oesophageal reflux in the development of Barrett's metaplasia. Br. J. Surg. 90, 1120–1128 (2003).

    CAS  PubMed  Google Scholar 

  146. Lindahl, H., Rintala, R., Sariola, H. & Louhimo, I. Cervical Barrett's esophagus: a common complication of gastric tube reconstruction. J. Pediatr. Surg. 25, 446–448 (1990).

    CAS  PubMed  Google Scholar 

  147. O'Riordan, J. M. et al. Factors influencing the development of Barrett's epithelium in the esophageal remnant postesophagectomy. Am. J. Gastroenterol. 99, 205–221 (2004).

    CAS  PubMed  Google Scholar 

  148. Hamilton, S. R. & Yardley, J. H. Regenerative cardiac type mucosa and acquisition of Barrett mucosa after esophagogastrostomy. Gastroenterology 72, 669–675 (1977).

    CAS  PubMed  Google Scholar 

  149. Castillo, D. et al. Activation of the BMP4 pathway and early expression of CDX2 characterize non-specialized columnar metaplasia in a human model of Barrett's esophagus. J. Gastrointest. Surg. 16, 227–237 (2012).

    PubMed  Google Scholar 

  150. Leodolter, A. et al. Progression of specialized intestinal metaplasia at the cardia to macroscopically evident Barrett's esophagus: an entity of concern in the ProGERD study. Scand. J. Gastroenterol. 47, 1429–1435 (2012).

    PubMed  Google Scholar 

  151. Galandiuk, S. et al. Field cancerization in the intestinal epithelium of patients with Crohn's ileocolitis. Gastroenterology 142, 855–864 (2012).

    PubMed  Google Scholar 

  152. Chandrasoma, P. T. et al. Definition of histopathologic changes in gastroesophageal reflux disease. Am. J. Surg. Pathol. 24, 344–351 (2000).

    CAS  PubMed  Google Scholar 

  153. Nishimaki, T., Watanabe, K., Suzuki, T., Hatakeyama, K. & Watanabe, H. Early esophageal adenocarcinoma arising in a short segment of Barrett's mucosa after total gastrectomy. Am. J. Gastroenterol. 91, 1856–1857 (1996).

    CAS  PubMed  Google Scholar 

  154. Guo, R. J., Suh, E. R. & Lynch, J. P. The role of Cdx proteins in intestinal development and cancer. Cancer Biol. Ther. 3, 593–601 (2004).

    CAS  PubMed  Google Scholar 

  155. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS  PubMed  Google Scholar 

  156. Baker, A. M. et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 8, 940–947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Mari, L. et al. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep. 7, 1197–1210 (2014).

    CAS  PubMed  Google Scholar 

  158. Chaves, P. et al. Recurrent columnar-lined esophageal segments—study of the phenotypic characteristics using intestinal markers. Dis. Esophagus 15, 282–286 (2002).

    CAS  PubMed  Google Scholar 

  159. Chaves, P. et al. Non-goblet cell population of Barrett's esophagus: an immunohistochemical demonstration of intestinal differentiation. Hum. Pathol. 30, 1291–1295 (1999).

    CAS  PubMed  Google Scholar 

  160. Dias Pereira, A. & Chaves, P. Columnar-lined oesophagus without intestinal metaplasia: results from a cohort with a mean follow-up of 7 years. Aliment. Pharmacol. Ther. 36, 282–289 (2012).

    CAS  PubMed  Google Scholar 

  161. Chandrasoma, P., Wijetunge, S., Demeester, S. R., Hagen, J. & Demeester, T. R. The histologic squamo-oxyntic gap: an accurate and reproducible diagnostic marker of gastroesophageal reflux disease. Am. J. Surg. Pathol. 34, 1574–1581 (2010).

    PubMed  Google Scholar 

  162. Takubo, K., Sasajima, K., Yamashita, K., Tanaka, Y. & Fujita, K. Double muscularis mucosae in Barrett's esophagus. Hum. Pathol. 22, 1158–1161 (1991).

    CAS  PubMed  Google Scholar 

  163. Peitz, U. Small-bowel metaplasia arising in the remnant esophagus after esophagojejunostomy—a [corrected] prospective study in patients with a history of total gastrectomy. Am. J. Gastroenterol. 100, 2062–2070 (2005).

    PubMed  Google Scholar 

  164. Carlson, C. A. et al. Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nat. Methods 9, 78–80 (2011).

    PubMed  PubMed Central  Google Scholar 

  165. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.A.C.M. acknowledges funding from CORE, the MRC and Barts Charity. N.A.W. acknowledges funding from Cancer Research UK. M.J. acknowledges funding from the Dutch Cancer Society. The funders had no influence on the design or content of this Perspectives.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Stuart A. C. McDonald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Stained Barrett glands. (PDF 231 kb)

Supplementary Figure 2

Intestinal metaplastic glands from the human stomach and Barrett glands are clonal. (PDF 296 kb)

Supplementary Figure 3

a | A large patch of >10 Cytochrome c oxidase (CCO)-deficient Barrett oesophagus glands before laser capture microdissection. (PDF 186 kb)

Supplementary Figure 4

a | (i) A sample of Barrett metaplasia from a patient who has undergone ablative therapy. (PDF 293 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, S., Lavery, D., Wright, N. et al. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol 12, 50–60 (2015). https://doi.org/10.1038/nrgastro.2014.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing