Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress in the care of common inherited atherogenic disorders of apolipoprotein B metabolism

Key Points

  • Familial hypercholesterolaemia, familial combined hyperlipidaemia and elevated lipoprotein(a) are inherited disorders of apo B-100 metabolism that are frequently encountered in clinical lipidology

  • Each of these inherited hyperlipidaemias markedly accelerates the onset of atherosclerotic cardiovascular disease (ASCVD)

  • To prevent premature ASCVD, these disorders must be accurately diagnosed and treated in index patients and at-risk family members

  • The supplementation of established lipid-lowering therapies with newly developed biological agents will be important for managing the most severe hyperlipidaemias, but long-term safety and cost-effectiveness need to be demonstrated

  • The promotion of public and clinical awareness of these disorders, and the establishment and maintenance of appropriate patient registries, are essential to facilitate research and improve clinical care

Abstract

Familial hypercholesterolaemia, familial combined hyperlipidaemia (FCH) and elevated lipoprotein(a) are common, inherited disorders of apolipoprotein B metabolism that markedly accelerate the onset of atherosclerotic cardiovascular disease (ASCVD). These disorders are frequently encountered in clinical lipidology and need to be accurately identified and treated in both index patients and their family members, to prevent the development of premature ASCVD. The optimal screening strategies depend on the patterns of heritability for each condition. Established therapies are widely used along with lifestyle interventions to regulate levels of circulating lipoproteins. New therapeutic strategies are becoming available, and could supplement traditional approaches in the most severe cases, but their long-term cost-effectiveness and safety have yet to be confirmed. We review contemporary developments in the understanding, detection and care of these highly atherogenic disorders of apolipoprotein B metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed diagnostic protocol for cascade testing individuals for familial hypercholesterolaemia.
Figure 2: Algorithms for managing patients with familial hypercholesterolaemia.
Figure 3: Algorithm for managing patients with familial combined hyperlipidaemia.
Figure 4: Algorithm for the future management of patients with hyper-Lp(a).

Similar content being viewed by others

References

  1. Adiels, M., Olofsson, S. O., Taskinen, M. R. & Borén, J. Diabetic dyslipidaemia. Curr. Opin. Lipidol. 17, 238–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Marais, A. D., Solomon, G. A. & Blom, D. J. Dysbetalipoproteinaemia: a mixed hyperlipidaemia of remnant lipoproteins due to mutations in apolipoprotein E. Crit. Rev. Clin. Lab. Sci. 51, 46–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490a (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watts, G. F. et al. Prevalence and treatment of familial hypercholesterolaemia in Australian communities. Int. J. Cardiol. 185, 69–71 (2015).

    Article  PubMed  Google Scholar 

  5. Pang, J. et al. Frequency of familial hypercholesterolemia in patients with early-onset coronary artery disease admitted to a coronary care unit. J. Clin. Lipidol. 9, 703–708 (2015).

    Article  PubMed  Google Scholar 

  6. De Backer, G. et al. Prevalence and management of familial hypercholesterolaemia in coronary patients: an analysis of EUROASPIRE IV, a study of the European Society of Cardiology. Atherosclerosis 241, 169–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Watts, G. F. et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int. J. Cardiol. 171, 309–325 (2014).

    Article  PubMed  Google Scholar 

  8. Horton, J. D. et al. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50 (Suppl.), S172–S177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel, J. et al. Coronary artery calcium improves risk assessment in adults with a family history of premature coronary heart disease: results from Multiethnic Study of Atherosclerosis. Circ. Cardiovasc. Imag. 8, e003186 (2015).

    Google Scholar 

  10. Sijbrands, E. J., Nieman, K., Budoff, M. J. & FH CTA Consortium. Cardiac computed tomography imaging in familial hypercholesterolaemia: implications for therapy and clinical trials. Curr. Opin. Lipidol. 26, 586–592 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Tardif, J. C., Lesage, F., Harel, F., Romeo, P. & Pressacco, J. Imaging biomarkers in atherosclerosis trials. Circ. Cardiovasc. Imag. 4, 319–333 (2011).

    Article  Google Scholar 

  12. Soutar, A. K. & Naoumova, R. P. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med. 4, 214–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Motazacker, M. M. et al. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Eur. Heart J. 33, 1360–1366 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Usifo, E. et al. Low-density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann. Hum. Genet. 76, 387–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kotze, M. J. et al. Phenotypic variation among familial hypercholesterolemics heterozygous for either one of two Afrikaner founder LDL receptor mutations. Arterioscler. Thromb. 13, 1460–1468 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Santos, P. C. et al. Presence and type of low density lipoprotein receptor (LDLR) mutation influences the lipid profile and response to lipid-lowering therapy in Brazilian patients with heterozygous familial hypercholesterolemia. Atherosclerosis 233, 206–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Awan, Z. et al. APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis 231, 218–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Marduel, M. et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum. Mutat. 34, 83–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Wintjens, R. et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J. Lipid Res. 7, 482–491 (2016).

    Article  CAS  Google Scholar 

  20. Fouchier, S. W. et al. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Circ. Res. 115, 552–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Johansen, C. T. et al. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J. Lipid Res. 55, 765–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maglio, C. et al. Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. J. Intern. Med. 276, 396–403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Page, M. M., Stefanutti, C., Sniderman, A. & Watts, G. F. Recent advances in the understanding and care of familial hypercholesterolaemia: significance of the biology and therapeutic regulation of proprotein convertase subtilisin/kexin type 9. Clin. Sci. (Lond.) 129, 63–79 (2015).

    Article  CAS  Google Scholar 

  24. Alonso, R. et al. Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J. Am. Coll. Cardiol. 63, 1982–1989 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Versmissen, J. et al. Identifying genetic risk variants for coronary heart disease in familial hypercholesterolemia: an extreme genetics approach. Eur. J. Hum. Genet. 23, 381–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. van Iperen, E. P. et al. Common genetic variants do not associate with CAD in familial hypercholesterolemia. Eur. J. Hum. Genet. 22, 809–813 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Ademi, Z. et al. Cascade screening based on genetic testing is cost-effective: evidence for the implementation of models of care for familial hypercholesterolemia. J. Clin. Lipidol. 8, 390–400 (2014).

    Article  PubMed  Google Scholar 

  28. Morris, J. K., Wald, D. S. & Wald, N. J. The evaluation of cascade testing for familial hypercholesterolemia. Am. J. Med. Genet. A 158A, 78–84 (2012).

    Article  PubMed  Google Scholar 

  29. Damgaard, D. et al. The relationship of molecular genetic to clinical diagnosis of familial hypercholesterolemia in a Danish population. Atherosclerosis 180, 155–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Harada-Shiba, M. et al. Guidelines for the management of familial hypercholesterolemia. J. Atheroscler. Thromb. 19, 1043–1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Shi, Z. et al. Familial hypercholesterolemia in China: prevalence and evidence of underdetection and undertreatment in a community population. Int. J. Cardiol. 174, 834–836 (2014).

    Article  PubMed  Google Scholar 

  32. Bell, D. A. et al. Familial hypercholesterolaemia in primary care: knowledge and practices among general practitioners in Western Australia. Heart Lung Circ. 23, 309–313 (2014).

    Article  PubMed  Google Scholar 

  33. Pang, J. et al. Significant gaps in awareness of familial hypercholesterolemia among physicians in selected Asia-Pacific countries: a pilot study. J. Clin. Lipidol. 9, 42–48 (2015).

    Article  PubMed  Google Scholar 

  34. Bell, D. A. et al. Impact of interpretative commenting on lipid profiles in people at high risk of familial hypercholesterolaemia. Clin. Chim. Acta 422, 21–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Kirke, A. B. et al. Systematic detection of familial hypercholesterolaemia in primary health care: a community based prospective study of three methods. Heart Lung Circ. 24, 250–256 (2015).

    Article  PubMed  Google Scholar 

  36. Weng, S. F., Kai, J., Andrew Neil, H., Humphries, S. E. & Qureshi, N. Improving identification of familial hypercholesterolaemia in primary care: derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT). Atherosclerosis 238, 336–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Norsworthy, P. J. et al. Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing: a population-based study. BMC Med. Genet. 15, 70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Green, R. C. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 15, 565–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henneman, L., McBride, C. M., Cornel, M. C., Duquette, D. & Qureshi, N. Screening for familial hypercholesterolemia in children: what can we learn from adult screening programs? Healthcare 3, 1018–1030 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Klancˇar, G. et al. Universal screening for familial hypercholesterolemia in children. J. Am. Coll. Cardiol. 66, 1250–1257 (2015).

    Article  Google Scholar 

  41. Talmud, P. J., Futema, M. & Humphries, S. E. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr. Opin. Lipidol. 25, 274–281 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Futema, M. et al. Refinement of variant selection for the LDL-C genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from six countries. Clin. Chem. 61, 231–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Talmud, P. J. et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet 381, 1293–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

  45. Khera, A. V. et al. Diagnostic yield of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2016.03.520 (2016).

  46. Veerkamp, M. J., de Graaf, J., Hendriks, J. C., Demacker, P. N. & Stalenhoef, A. F. Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study. Circulation 109, 2980–2985 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Civeira, F. et al. Frequency of low-density lipoprotein receptor gene mutations in patients with a clinical diagnosis of familial combined hyperlipidemia in a clinical setting. J. Am. Coll. Cardiol. 52, 1546–1553 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Gidding, S. S. et al. The agenda for familial hypercholesterolemia: a scientific statement from the American Heart Association. Circulation 132, 2167–2192 (2015).

    Article  PubMed  Google Scholar 

  49. Goldberg, A. C. et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 5, 133–140 (2011).

    Article  PubMed  Google Scholar 

  50. Wierzbicki, A. S., Humphries, S. E. & Minhas, R. Familial hypercholesterolaemia: summary of NICE guidance. BMJ 337, a1095 (2008).

    Article  PubMed  Google Scholar 

  51. Vickery, A. W. et al. Optimising the detection and management of familial hypercholesterolaemia: central role of primary care and its integration with specialist services. Heart Lung Circ. 23, 1158–1164 (2014).

    Article  PubMed  Google Scholar 

  52. Cuchel, M. et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 35, 2146–2157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hammond, E. et al. Role of international registries in enhancing the care of familial hypercholesterolaemia. Int. J. Evid. Based Healthc. 11, 134–139 (2013).

    Article  PubMed  Google Scholar 

  54. Sjouke, B. et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype–phenotype relationship, and clinical outcome. Eur. Heart J. 36, 560–565 (2015).

    Article  PubMed  Google Scholar 

  55. Baum, S. J., Sijbrands, E. J., Mata, P. & Watts, G. F. The doctor's dilemma: challenges in the diagnosis and care of homozygous familial hypercholesterolemia. J. Clin. Lipidol. 8, 542–549 (2014).

    Article  PubMed  Google Scholar 

  56. Besseling, J. et al. Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: a study of a cohort of 14,000 mutation carriers. Atherosclerosis 233, 219–223 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Reiner, Z. et al. ESC/EAS guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 32, 1769–1818 (2011).

    Article  PubMed  Google Scholar 

  58. Stone, N. J. et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129 (25 Suppl. 2), S1–S45 (2014).

    Article  PubMed  Google Scholar 

  59. Wiegman, A. et al. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur. Heart J. 36, 2425–2437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leebmann, J. et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation 128, 2567–2576 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Goldstein, J. L., Schrott, H. G., Hazzard, W. R., Bierman, E. L. & Motulsky, A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52, 1544–1568 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brouwers, M. C., van Greevenbroek, M. M., Stehouwer, C. D., de Graaf, J. & Stalenhoef, A. F. The genetics of familial combined hyperlipidaemia. Nat. Rev. Endocrinol. 8, 352–362 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Wiesbauer, F. et al. Familial-combined hyperlipidaemia in very young myocardial infarction survivors (< or =40 years of age). Eur. Heart J. 30, 1073–1079 (2009).

    Article  PubMed  Google Scholar 

  64. Genest, J. J. Jr et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85, 2025–2033 (1992).

    Article  PubMed  Google Scholar 

  65. Voors-Pette, C. & de Bruin, T. W. Excess coronary heart disease in familial combined hyperlipidemia, in relation to genetic factors and central obesity. Atherosclerosis 157, 481–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hopkins, P. N. et al. Coronary artery disease risk in familial combined hyperlipidemia and familial hypertriglyceridemia: a case-control comparison from the National Heart, Lung, and Blood Institute Family Heart Study. Circulation 108, 519–523 (2003).

    Article  PubMed  Google Scholar 

  67. Rosenthal, E. A. et al. Joint linkage and association analysis with exome sequence data implicates SLC25A40 in hypertriglyceridemia. Am. J. Hum. Genet. 93, 1035–1045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abifadel, M. et al. A PCSK9 variant and familial combined hyperlipidaemia. J. Med. Genet. 45, 780–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Marcil, M. et al. Identification of a novel C5L2 variant (S323I) in a French Canadian family with familial combined hyperlipemia. Arterioscler. Thromb. Vasc. Biol. 26, 1619–1625 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Veerkamp, M. J. et al. Diagnosis of familial combined hyperlipidemia based on lipid phenotype expression in 32 families: results of a 5-year follow-up study. Arterioscler. Thromb. Vasc. Biol. 22, 274–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Miller, W. G. et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin. Chem. 56, 977–986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sniderman, A. D., Lamarche, B., Contois, J. H. & de Graaf, J. Discordance analysis and the Gordian Knot of LDL and non-HDL cholesterol versus apoB. Curr. Opin. Lipidol. 25, 461–467 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Emerging Risk Factors Collaboration et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

  74. Charlton-Menys, V. et al. Targets of statin therapy: LDL cholesterol, non-HDL cholesterol, and apolipoprotein B in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS). Clin. Chem. 55, 473–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Boekholdt, S. M. et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 307, 1302–1309 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Cruz-Bautista, I. et al. Determinants of VLDL composition and apo B-containing particles in familial combined hyperlipidemia. Clin. Chim. Acta 438, 160–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Fredenrich, A. et al. Plasma lipoprotein distribution of apoC-III in normolipidemic and hypertriglyceridemic subjects: comparison of the apoC-III to apoE ratio in different lipoprotein fractions. J. Lipid Res. 38, 1421–1432 (1997).

    CAS  PubMed  Google Scholar 

  78. Cohn, J. S., Patterson, B. W., Uffelman, K. D., Davignon, J. & Steiner, G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J. Clin. Endocrinol. Metab. 89, 3949–3955 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Ribas, V. et al. Human apolipoprotein A-II enrichment displaces paraoxonase from HDL and impairs its antioxidant properties: a new mechanism linking HDL protein composition and antiatherogenic potential. Circ. Res. 95, 789–797 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Julve, J. et al. Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome. Arterioscler. Thromb. Vasc. Biol. 30, 232–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Brouwers, M. C. et al. Plasma proprotein convertase subtilisin kexin type 9 is a heritable trait of familial combined hyperlipidaemia. Clin. Sci. (Lond.) 121, 397–403 (2011).

    Article  CAS  Google Scholar 

  82. Chan, D. C. et al. Plasma proprotein convertase subtilisin/kexin type 9: a marker of LDL apolipoprotein B-100 catabolism? Clin. Chem. 55, 2049–2052 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Melone, M., Wilsie, L., Palyha, O., Strack, A. & Rashid, S. Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J. Am. Coll. Cardiol. 59, 1697–1705 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Baratta, R. et al. Adiponectin relationship with lipid metabolism is independent of body fat mass: evidence from both cross-sectional and intervention studies. J. Clin. Endocrinol. Metab. 89, 2665–2671 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Koenen, T. B. et al. Adiponectin multimer distribution in patients with familial combined hyperlipidemia. Biochem. Biophys. Res. Commun. 376, 164–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Sarwar, N. et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Castro Cabezas, M. et al. Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J. Clin. Invest. 92, 160–168 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aitman, T. J. et al. Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia. Arterioscler. Thromb. 17, 748–754 (1997).

    Article  CAS  Google Scholar 

  89. Veerkamp, M. J., de Graaf, J. & Stalenhoef, A. F. Role of insulin resistance in familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 25, 1026–1031 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Purnell, J. Q., Kahn, S. E., Schwartz, R. S. & Brunzell, J. D. Relationship of insulin sensitivity and ApoB levels to intra-abdominal fat in subjects with familial combined hyperlipidemia. Arterioscler. Thromb. 21, 567–572 (2001).

    Article  CAS  Google Scholar 

  91. Miller, M. et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123, 2292–2333 (2011).

    Article  PubMed  Google Scholar 

  92. Chapman, M. J. et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur. Heart J. 32, 1345–1361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Watts, G. F., Ooi, E. M. & Chan, D. C. Demystifying the management of hypertriglyceridaemia. Nat. Rev. Cardiol. 10, 648–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Rumawas, M. E., Meigs, J. B., Dwyer, J. T., McKeown, N. M. & Jacques, P. F. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 90, 1608–1614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Esposito, K. & Giugliano, D. Mediterranean diet for primary prevention of cardiovascular disease. N. Engl. J. Med. 369, 674–675 (2013).

    PubMed  Google Scholar 

  96. Eckel, R. H. et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63, 2960–2984 (2014).

    Article  PubMed  Google Scholar 

  97. Dattilo, A. M. & Kris-Etherton, P. M. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am. J. Clin. Nutr. 56, 320–328 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Mateo-Gallego, R. et al. Serum lipid responses to weight loss differ between overweight adults with familial hypercholesterolemia and those with familial combined hyperlipidemia. J. Nutr. 144, 1219–1226 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Expert Dyslipidemia Panel of the International Atherosclerosis Society Panel members. An International Atherosclerosis Society Position Paper: global recommendations for the management of dyslipidemia — full report. J. Clin. Lipidol. 8, 29–60 (2014).

  100. Chan, D. C., Barrett, P. H. & Watts, G. F. The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia. Best Pract. Res. Clin. Endocrinol. Metab. 28, 369–385 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Hegele, R. A. et al. Nonstatin low-density lipoprotein-lowering therapy and cardiovascular risk reduction-statement from ATVB council. Arterioscler. Thromb. 35, 2269–2280 (2015).

    Article  CAS  Google Scholar 

  102. Catapano, A. L. et al. ESC/EAS Guidelines for the management of dyslipidaemias The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217, 3–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Jacobson, T. A. et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 — executive summary. J. Clin. Lipidol. 8, 473–488 (2014).

    Article  PubMed  Google Scholar 

  104. Mata, P. et al. [Familial combined hyperlipidemia: Consensus document]. Semergen 40, 374–380 (in Spanish) (2014).

    Article  PubMed  Google Scholar 

  105. Jun, M. et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 375, 1875–1884 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Ginsberg, H. N. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    Article  PubMed  Google Scholar 

  107. Inzucchi, S. E. et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38, 140–149 (2015).

    Article  PubMed  Google Scholar 

  108. Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Pressure 22, 193–278 (2013).

    Article  Google Scholar 

  109. Brunzell, J. D. et al. Lipoprotein management in patients with cardiometabolic risk: consensus conference report from the American Diabetes Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 51, 1512–1524 (2008).

    Article  PubMed  Google Scholar 

  110. Kronenberg, F. & Utermann, G. Lipoprotein(a): resurrected by genetics. J. Intern. Med. 273, 6–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Chretien, J. P. et al. Three single-nucleotide polymorphisms in LPA account for most of the increase in lipoprotein(a) level elevation in African Americans compared with European Americans. J. Med. Genet. 43, 917–923 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Virani, S. S. et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 125, 241–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Kraft, H. G. et al. Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 16, 713–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Kamstrup, P. R., Tybjaerg-Hansen, A., Steffensen, R. & Nordestgaard, B. G. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 301, 2331–2339 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Erqou, S. et al. Apolipoprotein(a) isoforms and the risk of vascular disease: systematic review of 40 studies involving 58,000 participants. J. Am. Coll. Cardiol. 55, 2160–2167 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maranhão, R. C., Carvalho, P. O., Strunz, C. C. & Pileggi, F. Lipoprotein (a): structure, pathophysiology and clinical implications. Arq. Bras. Cardiol. 103, 76–84 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Koschinsky, M. L., Côté, G. P., Gabel, B. & van der Hoek, Y. Y. Identification of the cysteine residue in apolipoprotein(a) that mediates extracellular coupling with apolipoprotein B-100. J. Biol. Chem. 268, 19819–19825 (1993).

    CAS  PubMed  Google Scholar 

  120. McCormick, S. P. et al. Mutagenesis of the human apolipoprotein B gene in a yeast artificial chromosome reveals the site of attachment for apolipoprotein(a). Proc. Natl Acad. Sci. USA 92, 10147–10151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Weisel, J. W. et al. The structure of lipoprotein(a) and ligand-induced conformational changes. Biochemistry 40, 10424–10435 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Marcovina, S. M. et al. Use of a reference material proposed by the International Federation of Clinical Chemistry and Laboratory Medicine to evaluate analytical methods for the determination of plasma lipoprotein(a). Clin. Chem. 46, 1956–1967 (2000).

    CAS  PubMed  Google Scholar 

  123. Brown, W. V., Ballantyne, C. M., Jones, P. H. & Marcovina, S. Management of Lp(a). J. Clin. Lipidol. 4, 240–247 (2010).

    Article  PubMed  Google Scholar 

  124. McConnell, J. P. et al. Lipoprotein(a) mass: a massively misunderstood metric. J. Clin. Lipidol. 8, 550–553 (2014).

    Article  PubMed  Google Scholar 

  125. Kronenberg, F., Lobentanz, E. M., König, P., Utermann, G. & Dieplinger, H. Effect of sample storage on the measurement of lipoprotein[a], apolipoproteins B and A-IV, total and high density lipoprotein cholesterol and triglycerides. J. Lipid Res. 35, 1318–1328 (1994).

    CAS  PubMed  Google Scholar 

  126. Kyriakou, T. et al. A common LPA null allele associates with lower lipoprotein(a) levels and coronary artery disease risk. Arterioscler. Thromb. Vasc. Biol. 34, 2095–2099 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Lamon-Fava, S., Diffenderfer, M. R. & Marcovina, S. M. Lipoprotein(a) metabolism. Curr. Opin. Lipidol. 25, 189–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Jenner, J. L. et al. The metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein (a) in human beings. Metabolism 54, 361–369 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Cain, W. J. et al. Lipoprotein [a] is cleared from the plasma primarily by the liver in a process mediated by apolipoprotein [a]. J. Lipid Res. 46, 2681–2691 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Rader, D. J. et al. The low density lipoprotein receptor is not required for normal catabolism of Lp(a) in humans. J. Clin. Invest. 95, 1403–1408 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Romagnuolo, R. et al. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 290, 11649–11662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Niemeier, A. et al. Identification of megalin/gp330 as a receptor for lipoprotein(a) in vitro. Arterioscler. Thromb. 19, 552–561 (1999).

    Article  CAS  Google Scholar 

  133. Yang, X. P. et al. Scavenger receptor-BI is a receptor for lipoprotein(a). J. Lipid Res. 54, 2450–2457 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Kronenberg, F., Utermann, G. & Dieplinger, H. Lipoprotein(a) in renal disease. Am. J. Kidney Dis. 27, 1–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Nordestgaard, B. G. et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur. Heart J. 31, 2844–2853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Albers, J. J. et al. Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes). J. Am. Coll. Cardiol. 62, 1575–1579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khera, A. V. et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER Trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin). Circulation 129, 635–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Willeit, P. et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck Study. J. Am. Coll. Cardiol. 64, 851–860 (2014).

    Article  PubMed  Google Scholar 

  140. Dubé, J. B., Boffa, M. B., Hegele, R. A. & Koschinsky, M. L. Lipoprotein(a): more interesting than ever after 50 years. Curr. Opin. Lipidol. 23, 133–140 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Jansen, A. C. et al. The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients. J. Intern. Med. 256, 482–490 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Chan, D. C. et al. Elevated lipoprotein(a), hypertension and renal insufficiency as predictors of coronary artery disease in patients with genetically confirmed heterozygous familial hypercholesterolemia. Int. J. Cardiol. 201, 633–638 (2015).

    Article  PubMed  Google Scholar 

  143. Hopkins, P. N. et al. Evaluation of coronary risk factors in patients with heterozygous familial hypercholesterolemia. Am. J. Cardiol. 87, 547–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. de Sauvage Nolting, P. R. et al. Prevalence and significance of cardiovascular risk factors in a large cohort of patients with familial hypercholesterolaemia. J. Intern. Med. 253, 161–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Neil, H. A. et al. Established and emerging coronary risk factors in patients with heterozygous familial hypercholesterolaemia. Heart 90, 1431–1437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Watts, G. F. et al. Familial hypercholesterolaemia: a model of care for Australasia. Atheroscler. Suppl. 12, 221–263 (2011).

    Article  PubMed  Google Scholar 

  147. Tsimikas, S. et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 386, 1472–1483 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Graham, M. J., Viney, N., Crooke, R. & Tsimikas, S. Antisense inhibition of apolipoprotein(a) to lower plasma lipoprotein(a) levels in humans. J. Lipid Res. 57, 340–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bos, S., Yayha, R. & van Lennep, J. E. Latest developments in the treatment of lipoprotein (a). Curr. Opin. Lipidol. 25, 452–460 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Hoover-Plow, J. & Huang, M. Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism 62, 479–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Kolski, B. & Tsimikas, S. Emerging therapeutic agents to lower lipoprotein (a) levels. Curr. Opin. Lipidol. 23, 560–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Guyton, J. R. et al. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides and Impact on Global Health Outcomes). J. Am. Coll. Cardiol. 62, 1580–1584 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Page, M. M., Bell, D. A., Hooper, A. J., Watts, G. F. & Burnett, J. R. Lipoprotein apheresis and new therapies for severe familial hypercholesterolemia in adults and children. Best Pract. Res. Clin. Endocrinol. Metab. 28, 387–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Stein, E. A., Lane, M. & Laskarzewski, P. Comparison of statins in hypertriglyceridemia. Am. J. Cardiol. 81, 66B–69B (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Cholesterol Treatment Trialists (CTT) Collaboration et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

  156. Elis, A., Zhou, R. & Stein, E. A. Effect of lipid-lowering treatment on natural history of heterozygous familial hypercholesterolemia in past three decades. Am. J. Cardiol. 108, 223–226 (2011).

    Article  PubMed  Google Scholar 

  157. Smilde, T. J. et al. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial. Lancet 357, 577–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Raal, F. J. et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation 124, 2202–2207 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Pijlman, A. H. et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis 209, 189–194 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Pandor, A. et al. Ezetimibe monotherapy for cholesterol lowering in 2,722 people: systematic review and meta-analysis of randomized controlled trials. J. Intern. Med. 265, 568–580 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tsujita, K. et al. Impact of dual lipid-lowering strategy with ezetimibe and atorvastatin on coronary plaque regression in patients with percutaneous coronary intervention: the multicenter randomized controlled PRECISE-IVUS trial. J. Am. Coll. Cardiol. 66, 495–507 (2015).

    Article  PubMed  Google Scholar 

  163. Knopp, R. H. Drug treatment of lipid disorders. N. Engl. J. Med. 341, 498–511 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Handelsman, Y. Role of bile acid sequestrants in the treatment of type 2 diabetes. Diabetes Care 34 (Suppl. 2), S244–S250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. [No authors listed.] The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251, 365–374 (1984).

  166. [No authors listed.] The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 251, 351–364 (1984).

  167. Davidson, M. The efficacy of colesevelam HCl in the treatment of heterozygous familial hypercholesterolemia in pediatric and adult patients. Clin. Ther. 35, 1247–1252 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Huijgen, R. et al. Colesevelam added to combination therapy with a statin and ezetimibe in patients with familial hypercholesterolemia: a 12-week, multicenter, randomized, double-blind, controlled trial. Clin. Ther. 32, 615–625 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Reiner, Z. Management of patients with familial hypercholesterolaemia. Nat. Rev. Cardiol. 12, 565–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Chapman, M. J., Redfern, J. S., McGovern, M. E. & Giral, P. Niacin and fibrates in atherogenic dyslipidemia: pharmacotherapy to reduce cardiovascular risk. Pharmacol. Ther. 126, 314–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Frick, M. H. et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N. Engl. J. Med. 317, 1237–1245 (1987).

    Article  CAS  PubMed  Google Scholar 

  174. Bezafibrate Infarction Prevention (BIP) Study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 102, 21–27 (2000).

  175. Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Keech, A. C. et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 370, 1687–1697 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. ACCORD Study Group. et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363, 233–244 (2010).

  178. Creider, J. C., Hegele, R. A. & Joy, T. R. Niacin: another look at an underutilized lipid-lowering medication. Nat. Rev. Endocrinol. 8, 517–528 (2012).

    Article  CAS  PubMed  Google Scholar 

  179. Canner, P. L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).

    Article  CAS  PubMed  Google Scholar 

  180. AIM-HIGH Investigators et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

  181. HPS2-THRIVE Collaborative Group et al. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).

  182. Mozaffarian, D. & Wu, J. H. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 58, 2047–2067 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Roth, E. M. ω-3 carboxylic acids for hypertriglyceridemia. Expert Opin. Pharmacother. 16, 123–133 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Ballantyne, C. M. et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am. J. Cardiol. 110, 984–992 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. ORIGIN Trial Investigators et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 367, 309–318 (2012).

  186. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT02104817 (2015).

  187. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01492361 (2016).

  188. Davidson, M. H., Armani, A., McKenney, J. M. & Jacobson, T. A. Safety considerations with fibrate therapy. Am. J. Cardiol. 99, 3C–18C (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Brasky, T. M. et al. Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. J. Natl Cancer Inst. 105, 1132–1141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Giugliano, R. P. Niacin at 56 years of age — time for an early retirement? N. Engl. J. Med. 365, 2318–2320 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. HPS2-THRIVE Collaborative Group et al. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 34, 1279–1291 (2013).

  192. Jacobson, T. A. Combination lipid-altering therapy: an emerging treatment paradigm for the 21st century. Curr. Atheroscler. Rep. 3, 373–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Blazing, M. A. et al. Evaluating cardiovascular event reduction with ezetimibe as an adjunct to simvastatin in 18,144 patients after acute coronary syndromes: final baseline characteristics of the IMPROVE-IT study population. Am. Heart J. 168, 205–212.e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Rubenfire, M., Brook, R. D. & Rosenson, R. S. Treating mixed hyperlipidemia and the atherogenic lipid phenotype for prevention of cardiovascular events. Am. J. Med. 123, 892–898 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Robinson, J. G. et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1489–1499 (2015).

    Article  CAS  PubMed  Google Scholar 

  196. Blom, D. J. et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N. Engl. J. Med. 370, 1809–1819 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Raal, F. J. et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet 385, 341–350 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Navarese, E. P. et al. Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann. Intern. Med. 163, 40–51 (2015).

    Article  PubMed  Google Scholar 

  199. Sabatine, M. S. et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med. 372, 1500–1509 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01975389 (2016).

  201. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01975376 (2016).

  202. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01663402 (2016).

  203. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01764633 (2016).

  204. Stein, E. A. et al. Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur. Heart J. 35, 2249–2259 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Stroes, E. et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol. 63, 2541–2548 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Stein, E. A. & Raal, F. J. New therapies for reducing low-density lipoprotein cholesterol. Endocrinol. Metab. Clin. North Am. 43, 1007–1033 (2014).

    Article  PubMed  Google Scholar 

  207. Raal, F. J. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375, 998–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  208. Stein, E. A. et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation 126, 2283–2292 (2012).

    Article  CAS  PubMed  Google Scholar 

  209. Thomas, G. S. et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 62, 2178–2184 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. McGowan, M. P. et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 7, e49006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gaudet, D. et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N. Engl. J. Med. 373, 438–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Cuchel, M. et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 381, 40–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Tuteja, S. et al. Pharmacokinetic interactions of the microsomal triglyceride transfer protein inhibitor, lomitapide, with drugs commonly used in the management of hypercholesterolemia. Pharmacotherapy 34, 227–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2022 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Tardif, J. C. et al. Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib. Circ. Cardiovasc. Genet. 8, 372–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01687998 (2016).

  218. MacGregor, J. S. Lilly to discontinue development of evacetrib for high-risk atherosclerotic cardiovascular disease. PR Newswire, http://www.prnewswire.com/news-releases/lilly-to-discontinue-development-of-evacetrapib-for-high-risk-atherosclerotic-cardiovascular-disease-300157604.html (2015).

  219. Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).

    Article  CAS  PubMed  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01252953 (2015).

  221. Hovingh, G. K. et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 386, 452–460 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Pinkosky, S. L. et al. AMP-activated protein kinase and ATP-citrate lyase are two distinct molecular targets for ETC-1002, a novel small molecule regulator of lipid and carbohydrate metabolism. J. Lipid Res. 54, 134–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Filippov, S., Pinkosky, S. L. & Newton, R. S. LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Curr. Opin. Lipidol. 25, 309–315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Stein, E. A. & Raal, F. J. Lipid-lowering drug therapy for CVD prevention: looking into the future. Curr. Cardiol. Rep. 17, 104 (2015).

    Article  PubMed  Google Scholar 

  225. Bays, H. E. et al. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 96, 2889–2897 (2011).

    Article  CAS  PubMed  Google Scholar 

  226. Ellis, J. M., Frahm, J. L., Li, L. O. & Coleman, R. A. Acyl-coenzyme A synthetases in metabolic control. Curr. Opin. Lipidol. 21, 212–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bays, H. E. et al. Effectiveness and tolerability of a new lipid-altering agent, gemcabene, in patients with low levels of high-density lipoprotein cholesterol. Am. J. Cardiol. 92, 538–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  228. Mandema, J. W. et al. Model-based development of gemcabene, a new lipid-altering agent. AAPS J. 7, E513–E522 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bell, D. A. & Watts, G. F. Response to familial hypercholesterolemia: an under-recognized but significant concern in cardiology practice. Clin. Cardiol. 37, 386–387 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gerald F. Watts.

Ethics declarations

Competing interests

G.F.W. has received research grants and advisory board honouraria from Amgen and Sanofi. The other authors declare no competing interests.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Dutch Lipid Clinic Network Score for making a diagnosis of familial hypercholesterolaemia in an index patient. (PDF 332 kb)

Supplementary information S2 (box)

Indications for measuring lipoprotein(a) (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, K., Hooper, A., Burnett, J. et al. Progress in the care of common inherited atherogenic disorders of apolipoprotein B metabolism. Nat Rev Endocrinol 12, 467–484 (2016). https://doi.org/10.1038/nrendo.2016.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing