Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive and autonomic determinants of energy homeostasis in obesity

Key Points

  • Obesity results from genetic and environmental factors that interfere with the action of brain and peripheral networks involved in regulating energy balance

  • The control of energy expenditure is, in part, exerted on the activity of brown adipose tissue, which might have a considerable thermogenic effect in the body

  • The controls of energy intake and expenditure are insured by interrelated cortical executive, reward and autonomic circuits in the brain

  • The dopamine mesolimbic circuit and the opioid, endocannabinoid and melanocortin systems are key central nervous system elements in energy homeostasis

  • Leptin and ghrelin are peripheral homeostatic hormones that signal to the brain to provide information on energy balance and nutritional status

Abstract

Obesity ensues from an imbalance between energy intake and expenditure that results from gene–environment interactions, which favour a positive energy balance. A society that promotes unhealthy food and encourages sedentary lifestyle (that is, an obesogenic environment) has become a major contributory factor in excess fat deposition in individuals predisposed to obesity. Energy homeostasis relies upon control of energy intake as well as expenditure, which is in part determined by the themogenesis of brown adipose tissue and mediated by the sympathetic nervous system. Several areas of the brain that constitute cognitive and autonomic brain systems, which in turn form networks involved in the control of appetite and thermogenesis, also contribute to energy homeostasis. These networks include the dopamine mesolimbic circuit, as well as the opioid, endocannabinoid and melanocortin systems. The activity of these networks is modulated by peripheral factors such as hormones derived from adipose tissue and the gut, which access the brain via the circulation and neuronal signalling pathways to inform the central nervous system about energy balance and nutritional status. In this Review, I focus on the determinants of energy homeostasis that have emerged as prominent factors relevant to obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Control of thermogenesis in BAT.
Figure 2: Regulation of energy balance.
Figure 3: Hypothalamic control of food intake.

Similar content being viewed by others

References

  1. Tchernof, A. & Despres, J. P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Finkelstein, E. A., Trogdon, J. G., Cohen, J. W. & Dietz, W. Annual medical spending attributable to obesity: payer- and service-specific estimates. Health Aff. (Millwood) 28, w822–w831 (2009).

    Article  Google Scholar 

  3. Hall, K. D. et al. Energy balance and its components: implications for body weight regulation. Am. J. Clin. Nutr. 95, 989–994 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Foster, D. O. Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism. Can. J. Biochem. Cell. Biol. 62, 618–622 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Chechi, K., Carpentier, A. C. & Richard, D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endocrinol. Metab. 24, 408–420 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Contreras, C. et al. The brain and brown fat. Ann. Med. 47, 1–19 (2015).

    Article  CAS  Google Scholar 

  7. El-Sayed Moustafa, J. S. & Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 9, 402–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Lukaszewski, M. A., Eberle, D., Vieau, D. & Breton, C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am. J. Physiol. Endocrinol. Metab. 305, E1195–E1207 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Martin-Gronert, M. S. & Ozanne, S. E. Early life programming of obesity. Med. Wieku Rozwoj 17, 7–12 (2013).

    PubMed  Google Scholar 

  10. Williams, L. M. Hypothalamic dysfunction in obesity. Proc. Nutr. Soc. 71, 521–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Yon, M. A., Mauger, S. L. & Pickavance, L. C. Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br. J. Nutr. 109, 1573–1589 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Bouret, S. G. Role of early hormonal and nutritional experiences in shaping feeding behavior and hypothalamic development. J. Nutr. 140, 653–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Horvath, T. L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl Acad. Sci. USA 107, 14875–14880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Irani, B. G., Dunn-Meynell, A. A. & Levin, B. E. Altered hypothalamic leptin, insulin, and melanocortin binding associated with moderate-fat diet and predisposition to obesity. Endocrinology 148, 310–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Bouret, S. G. et al. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 7, 179–185 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nieuwdorp, M., Gilijamse, P. W., Pai, N. & Kaplan, L. M. Role of the microbiome in energy regulation and metabolism. Gastroenterology 146, 1525–1533 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Blaut, M. Gut microbiota and energy balance: role in obesity. Proc. Nutr. Soc. http://dx.doi.org/10.1017/S0029665114001700.

  18. Cani, P. D. Metabolism in 2013: The gut microbiota manages host metabolism. Nat. Rev. Endocrinol. 10, 74–76 (2014).

    Article  PubMed  Google Scholar 

  19. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Berthoud, H. R., Zheng, H. & Shin, A. C. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann. NY Acad. Sci. 1264, 36–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Fulton, S. Appetite and reward. Front. Neuroendocrinol. 31, 85–103 (2010).

    Article  PubMed  Google Scholar 

  22. Schneeberger, M., Gomis, R. & Claret, M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J. Endocrinol. 220, T25–T46 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Dagher, A. Functional brain imaging of appetite. Trends Endocrinol. Metab. 23, 250–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Woods, S. C. The control of food intake: behavioral versus molecular perspectives. Cell Metab. 9, 489–498 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dietrich, M. O. & Horvath, T. L. Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends Neurosci. 36, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Stice, E., Figlewicz, D. P., Gosnell, B. A., Levine, A. S. & Pratt, W. E. The contribution of brain reward circuits to the obesity epidemic. Neurosci. Biobehav. Rev. 37, 2047–2058 (2013).

    Article  PubMed  Google Scholar 

  27. Volkow, N. D., Wang, G. J., Tomasi, D. & Baler, R. D. Obesity and addiction: neurobiological overlaps. Obes. Rev. 14, 2–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Richard, D., Monge-Roffarello, B., Chechi, K., Labbe, S. M. & Turcotte, E. E. Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front. Endocrinol. (Lausanne) 3, 36 (2012).

    Article  Google Scholar 

  29. Richard, D. Energy expenditure: a critical determinant of energy balance with key hypothalamic controls. Minerva Endocrinol. 32, 173–183 (2007).

    CAS  PubMed  Google Scholar 

  30. Castro, D. C. & Berridge, K. C. Advances in the neurobiological bases for food 'liking' versus 'wanting'. Physiol. Behav. 136, 22–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Olsen, C. M. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology 61, 1109–1122 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bartness, T. J., Vaughan, C. H. & Song, C. K. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. (Lond.) 34 (Suppl. 1), S36–S42 (2010).

    Article  Google Scholar 

  34. Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Vainik, U., Dagher, A., Dubé, L. & Fellows, L. K. Neurobehavioural correlates of body mass index and eating behaviours in adults: a systematic review. Neurosci. Biobehav. Rev. 37, 279–299 (2013).

    Article  PubMed  Google Scholar 

  36. Veit, R. et al. Reduced cortical thickness associated with visceral fat and BMI. Neuroimage Clin. 6, 307–311 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cazettes, F., Cohen, J. I., Yau, P. L., Talbot, H. & Convit, A. Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res. 1373, 101–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Goldman, R. L. et al. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity (Silver Spring) 21, 2189–2196 (2013).

    Article  Google Scholar 

  39. Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A. & Horstmann, A. Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Front. Psychol. 5, 1073 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Bongers, P. et al. Being impulsive and obese increases susceptibility to speeded detection of high-calorie foods. Health Psychol. 34, 677–685 (2015).

    Article  PubMed  Google Scholar 

  41. Folkvord, F., Anschutz, D. J., Nederkoorn, C., Westerik, H. & Buijzen, M. Impulsivity, “advergames,” and food intake. Pediatrics 133, 1007–1012 (2014).

    Article  PubMed  Google Scholar 

  42. Sutin, A., Ferrucci, L., Zonderman, A. & Terracciano, A. Personality and obesity across the adult life span. J. Pers. Soc. Psychol. 101, 579–592 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jansen, A. et al. High-restrained eaters only overeat when they are also impulsive. Behav. Res. Ther. 47, 105–110 (2009).

    Article  PubMed  Google Scholar 

  44. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Berridge, K. C., Ho, C. Y., Richard, J. M. & DiFeliceantonio, A. G. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Small, D. M. Taste representation in the human insula. Brain Struct. Funct. 214, 551–561 (2010).

    Article  PubMed  Google Scholar 

  48. King, B. M. The modern obesity epidemic, ancestral hunter-gatherers, and the sensory/reward control of food intake. Am. Psychol. 68, 88–96 (2013).

    Article  PubMed  Google Scholar 

  49. Sominsky, L. & Spencer, S. J. Eating behavior and stress: a pathway to obesity. Front. Psychol. 5, 434 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gibson, E. L. The psychobiology of comfort eating: implications for neuropharmacological interventions. Behav. Pharmacol. 23, 442–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Richard, J. M., Castro, D. C., Difeliceantonio, A. G., Robinson, M. J. & Berridge, K. C. Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci. Biobehav. Rev. 37, 1919–1931 (2013).

    Article  PubMed  Google Scholar 

  52. Stice, E., Spoor, S., Bohon, C. & Small, D. M. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322, 449–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kenny, P. J., Voren, G. & Johnson, P. M. Dopamine D2 receptors and striatopallidal transmission in addiction and obesity. Curr. Opin. Neurobiol. 23, 535–538 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Trifilieff, P. & Martinez, D. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology 76 (Pt B), 498–509 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Volkow, N. D. et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage 42, 1537–1543 (2008).

    Article  PubMed  Google Scholar 

  56. Volkow, N. D., Wang, G. J., Tomasi, D. & Baler, R. D. The addictive dimensionality of obesity. Biol. Psychiatry 73, 811–818 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Richard, D., Guesdon, B. & Timofeeva, E. The brain endocannabinoid system in the regulation of energy balance. Best Pract Res. Clin. Endocrinol. Metab. 23, 17–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Pecina, S. & Smith, K. S. Hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol. Biochem. Behav. 97, 34–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Cristino, L., Becker, T. & Di Marzo, V. Endocannabinoids and energy homeostasis: an update. Biofactors 40, 389–397 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Bermudez-Silva, F. J., Cardinal, P. & Cota, D. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J. Psychopharmacol. 26, 114–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Bodnar, R. J. Endogenous opiates and behavior: 2013. Peptides 62, 67–136 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Di Marzo, V. Endocannabinoids: synthesis and degradation. Rev. Physiol. Biochem. Pharmacol. 160, 1–24 (2008).

    CAS  PubMed  Google Scholar 

  63. Cota, D., Tschop, M. H., Horvath, T. L. & Levine, A. S. Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res. Rev. 51, 85–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Mahler, S. V., Smith, K. S. & Berridge, K. C. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances 'liking' of a sweet reward. Neuropsychopharmacology 32, 2267–2278 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Castro, D. C. & Berridge, K. C. Opioid hedonic hotspot in nucleus accumbens shell: μ, δ, and κ maps for enhancement of sweetness “liking” and “wanting”. J. Neurosci. 34, 4239–4250 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pecina, S. & Berridge, K. C. Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered 'wanting' for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur. J. Neurosci. 37, 1529–1540 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Margolis, E. B., Hjelmstad, G. O., Fujita, W. & Fields, H. L. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J. Neurosci. 34, 14707–14716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Riegel, A. C. & Lupica, C. R. Independent presynaptic and postsynaptic mechanisms regulate endocannabinoid signaling at multiple synapses in the ventral tegmental area. J. Neurosci. 24, 11070–11078 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zuberi, A. R., Townsend, L., Patterson, L., Zheng, H. & Berthoud, H. R. Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in μ-opioid receptor-deficient mice. Eur. J. Pharmacol. 585, 14–23 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Czyzyk, T. A. et al. Mice lacking δ-opioid receptors resist the development of diet-induced obesity. FASEB J. 26, 3483–3492 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ravinet Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrie, P. CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int. J. Obes. Relat. Metab. Disord. 28, 640–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Grissom, N. M. et al. Obesity at conception programs the opioid system in the offspring brain. Neuropsychopharmacology 39, 801–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Coll, A. P. & Yeo, G. S. The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis. Curr. Opin. Pharmacol. 13, 970–976 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Williams, G. et al. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74, 683–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Joly-Amado, A. et al. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28, 725–737 (2014).

    Article  PubMed  Google Scholar 

  76. Sainsbury, A. & Zhang, L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol. Cell. Endocrinol. 316, 109–119 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Ghamari-Langroudi, M., Srisai, D. & Cone, R. D. Multinodal regulation of the arcuate/paraventricular nucleus circuit by leptin. Proc. Natl Acad. Sci. USA 108, 355–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Kelley, A. E., Baldo, B. A. & Pratt, W. E. A proposed hypothalamic–thalamic–striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol. 493, 72–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Shah, B. P. et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl Acad. Sci. USA 111, 13193–13198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Simpson, K. A. & Bloom, S. R. Appetite and hedonism: gut hormones and the brain. Endocrinol. Metab. Clin. North Am. 39, 729–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Schwartz, G. J. Brainstem integrative function in the central nervous system control of food intake. Forum Nutr. 63, 141–151 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Blevins, J. E. & Baskin, D. G. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 63, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Hajnal, A., Norgren, R. & Kovacs, P. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann. NY Acad. Sci. 1170, 347–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Girardet, C. & Butler, A. A. Neural melanocortin receptors in obesity and related metabolic disorders. Biochim. Biophys. Acta 1842, 482–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Pandit, R., de Jong, J. W., Vanderschuren, L. J. & Adan, R. A. Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur. J. Pharmacol. 660, 28–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Renquist, B. J., Lippert, R. N., Sebag, J. A., Ellacott, K. L. & Cone, R. D. Physiological roles of the melanocortin MC3 receptor. Eur. J. Pharmacol. 660, 13–20 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mountjoy, K. G. Distribution and function of melanocortin receptors within the brain. Adv. Exp. Med. Biol. 681, 29–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Millington, G. W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. (Lond.) 4, 18 (2007).

    Article  CAS  Google Scholar 

  90. Elias, C. F. et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–1385 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Mercer, A. J., Hentges, S. T., Meshul, C. K. & Low, M. J. Unraveling the central proopiomelanocortin neural circuits. Front. Neurosci. 7, 19 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Challis, B. G. et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3–36 . Proc. Natl Acad. Sci. USA 101, 4695–4700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Coll, A. P., Farooqi, I. S., Challis, B. G., Yeo, G. S. & O'Rahilly, S. Proopiomelanocortin and energy balance: insights from human and murine genetics. J. Clin. Endocrinol. Metab. 89, 2557–2562 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Schwartz, M. W. et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46, 2119–2123 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Chen, A. S. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26, 97–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Valette, M. et al. Eating behaviour in obese patients with melanocortin-4 receptor mutations: a literature review. Int. J. Obes. (Lond.) 37, 1027–1035 (2013).

    Article  CAS  Google Scholar 

  98. Hebebrand, J., Hinney, A., Knoll, N., Volckmar, A. L. & Scherag, A. Molecular genetic aspects of weight regulation. Dtsch Arztebl. Int. 110, 338–344 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Ste Marie, L., Miura, G. I., Marsh, D. J., Yagaloff, K. & Palmiter, R. D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Natl Acad. Sci. USA 97, 12339–12344 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, A. S. et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. 9, 145–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Brito, M. N., Brito, N. A., Baro, D. J., Song, C. K. & Bartness, T. J. Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148, 5339–5347 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Butler, A. A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518–3521 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Sutton, G. M. et al. The melanocortin-3 receptor is required for entrainment to meal intake. J. Neurosci. 28, 12946–12955 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Renquist, B. J. et al. Melanocortin-3 receptor regulates the normal fasting response. Proc. Natl Acad. Sci. USA 109, E1489–E1498 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koch, M. et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519, 45–50 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Bagnol, D. et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci. 19, RC26 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haskell-Luevano, C. & Monck, E. K. Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regul. Pept. 99, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Ghamari-Langroudi, M. et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 520, 94–98 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Cansell, C., Denis, R. G., Joly-Amado, A., Castel, J. & Luquet, S. Arcuate AgRP neurons and the regulation of energy balance. Front. Endocrinol. (Lausanne) 3, 169 (2012).

    Article  CAS  Google Scholar 

  111. Rossi, M. et al. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139, 4428–4431 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Asakawa, A. et al. Effects of agouti-related protein, orexin and melanin-concentrating hormone on oxygen consumption in mice. Int. J. Mol. Med. 10, 523–525 (2002).

    CAS  PubMed  Google Scholar 

  113. Mizuno, T. M. & Mobbs, C. V. Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 140, 814–817 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Shutter, J. R. et al. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev. 11, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, Q. & Palmiter, R. D. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur. J. Pharmacol. 660, 21–27 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Hahn, T. M., Breininger, J. F., Baskin, D. G. & Schwartz, M. W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Chambers, A. P. & Woods, S. C. The role of neuropeptide Y in energy homeostasis. Handb. Exp. Pharmacol. 209, 23–45 (2012).

    Article  CAS  Google Scholar 

  120. Giraudo, S. Q., Billington, C. J. & Levine, A. S. Feeding effects of hypothalamic injection of melanocortin 4 receptor ligands. Brain Res. 809, 302–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Monge-Roffarello, B. et al. The PVH as a site of CB1-mediated stimulation of thermogenesis by MC4R agonism in male rats. Endocrinology 155, 3448–3458 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Song, C. K. et al. Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R417–R428 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Larsen, P. J., Moller, M. & Mikkelsen, J. D. Efferent projections from the periventricular and medial parvicellular subnuclei of the hypothalamic paraventricular nucleus to circumventricular organs of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. J. Comp. Neurol. 306, 462–479 (1991).

    Article  CAS  PubMed  Google Scholar 

  125. Moga, M. M., Weis, R. P. & Moore, R. Y. Efferent projections of the paraventricular thalamic nucleus in the rat. J. Comp. Neurol. 359, 221–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Garfield, A. S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. King, C. M. & Hentges, S. T. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites. PLoS ONE 6, e25864 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kishi, T. et al. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J. Comp. Neurol. 457, 213–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Roselli-Rehfuss, L. et al. Identification of a receptor for γ melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl Acad. Sci. USA 90, 8856–8860 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yen, H. H. & Roseberry, A. G. Decreased consumption of rewarding sucrose solutions after injection of melanocortins into the ventral tegmental area of rats. Psychopharmacology (Berl.) 232, 285–294 (2015).

    Article  CAS  Google Scholar 

  131. Lippert, R. N., Ellacott, K. L. & Cone, R. D. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 155, 1718–1727 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Cui, H. & Lutter, M. The expression of MC4Rs in D1R neurons regulates food intake and locomotor sensitization to cocaine. Genes Brain Behav. 12, 658–665 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zheng, J. Q., Seki, M., Hayakawa, T., Ito, H. & Zyo, K. Descending projections from the paraventricular hypothalamic nucleus to the spinal cord: anterograde tracing study in the rat. Okajimas Folia Anat. Jpn 72, 119–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Monge-Roffarello, B. et al. The medial preoptic nucleus as a site of the thermogenic and metabolic actions of melanotan II in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R158–R166 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Arens, J. et al. Age-dependent hypothalamic expression of neuropeptides in wild-type and melanocortin-4 receptor-deficient mice. Physiol. Genomics 16, 38–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Chao, P. T., Yang, L., Aja, S., Moran, T. H. & Bi, S. Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 13, 573–583 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Kim, K. W. et al. Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc. Natl Acad. Sci. USA 108, 10673–10678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lindberg, D., Chen, P. & Li, C. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J. Comp. Neurol. 521, 3167–3190 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Bamshad, M., Song, C. K. & Bartness, T. J. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276, R1569–R1578 (1999).

    CAS  PubMed  Google Scholar 

  140. Cano, G. et al. Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J. Comp. Neurol. 460, 303–326 (2003).

    Article  PubMed  Google Scholar 

  141. Majdic, G. et al. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 143, 607–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Cardinal, P. et al. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Mol. Metab. 3, 705–716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Kim, K. W. et al. FOXO1 in the ventromedial hypothalamus regulates energy balance. J. Clin. Invest. 122, 2578–2589 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Unger, T. J., Calderon, G. A., Bradley, L. C., Sena-Esteves, M. & Rios, M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J. Neurosci. 27, 14265–14274 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Caron, A., Baraboi, E. D., Laplante, M. & Richard, D. DEP domain-containing mTOR-interacting protein in the rat brain: Distribution of expression and potential implication. J. Comp. Neurol. 523, 93–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Cabanac, M. Regulation and the ponderostat. Int. J. Obes. Relat. Metab. Disord. 25 (Suppl. 5), S7–S12 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Levin, B. E. Central regulation of energy homeostasis intelligent design: how to build the perfect survivor. Obesity (Silver Spring) 14 (Suppl. 5), 192S–196S (2006).

    Article  Google Scholar 

  148. Keesey, R. E. & Powley, T. L. Body energy homeostasis. Appetite 51, 442–445 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Munzberg, H. & Morrison, C. D. Structure, production and signaling of leptin. Metabolism 64, 13–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Jovanovic, Z. & Yeo, G. S. Central leptin signalling: Beyond the arcuate nucleus. Auton Neurosci. 156, 8–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Perello, M. & Dickson, S. L. Ghrelin signaling on food reward: a salient link between the gut and the mesolimbic system. J. Neuroendocrinol. 27, 424–434 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kirchner, H., Heppner, K. M. & Tschop, M. H. The role of ghrelin in the control of energy balance. Handb. Exp. Pharmacol. 209, 161–184 (2012).

    Article  CAS  Google Scholar 

  154. Behary, P. & Miras, A. D. Brain responses to food and weight loss. Exp. Physiol. 99, 1121–1127 (2014).

    Article  PubMed  Google Scholar 

  155. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Rosenbaum, M. & Leibel, R. L. Adaptive thermogenesis in humans. Int. J. Obes. 34, S47–S55 (2010).

    Article  Google Scholar 

  157. Tremblay, A., Royer, M. M., Chaput, J. P. & Doucet, E. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int. J. Obes. (Lond.) 37, 759–764 (2013).

    Article  CAS  Google Scholar 

  158. Blundell, J. E. Perspective on the central control of appetite. Obesity (Silver Spring) 14 (Suppl. 4), 160S–163S (2006).

    Article  Google Scholar 

  159. Mimee, A., Smith, P. M. & Ferguson, A. V. Circumventricular organs: targets for integration of circulating fluid and energy balance signals? Physiol. Behav. 121, 96–102 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Park, H. K. & Ahima, R. S. Leptin signaling. F1000Prime Rep. 6, 73 (2014).

    PubMed  PubMed Central  Google Scholar 

  162. Allison, M. B. & Myers, M. G. Jr. 20 years of leptin: connecting leptin signaling to biological function. J. Endocrinol. 223, T25–T35 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Oswal, A. & Yeo, G. S. The leptin melanocortin pathway and the control of body weight: lessons from human and murine genetics. Obes. Rev. 8, 293–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Hakansson, M. L., Hulting, A. L. & Meister, B. Expression of leptin receptor mRNA in the hypothalamic arcuate nucleus—relationship with NPY neurones. Neuroreport 7, 3087–3092 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Cheung, C. C., Clifton, D. K. & Steiner, R. A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Rezai-Zadeh, K. et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab. 3, 681–693 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Opland, D. et al. Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol. Metab. 2, 423–434 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Hommel, J. D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Alhadeff, A. L., Hayes, M. R. & Grill, H. J. Leptin receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1338–R1344 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Dubern, B. & Clement, K. Leptin and leptin receptor-related monogenic obesity. Biochimie 94, 2111–2115 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  175. Matochik, J. A. et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J. Clin. Endocrinol. Metab. 90, 2851–2854 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Farooqi, I. S. et al. Leptin regulates striatal regions and human eating behavior. Science 317, 1355 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. Knight, Z. A., Hannan, K. S., Greenberg, M. L. & Friedman, J. M. Hyperleptinemia is required for the development of leptin resistance. PLoS ONE 5, e11376 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Bjorbaek, C. Central leptin receptor action and resistance in obesity. J. Investig. Med. 57, 789–794 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Myers, M. G., Jr., Leibel, R. L., Seeley, R. J. & Schwartz, M. W. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol. Metab. 21, 643–651 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Mark, A. L. Selective leptin resistance revisited. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R566–R581 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Enriori, P. J., Sinnayah, P., Simonds, S. E., Garcia Rudaz, C. & Cowley, M. A. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Field, B. C., Chaudhri, O. B. & Bloom, S. R. Bowels control brain: gut hormones and obesity. Nat. Rev. Endocrinol. 6, 444–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Sato, T. et al. Structure, regulation and function of ghrelin. J. Biochem. 151, 119–128 (2012).

    Article  PubMed  CAS  Google Scholar 

  185. Wortley, K. E. et al. Absence of ghrelin protects against early-onset obesity. J. Clin. Invest. 115, 3573–3578 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Zigman, J. M. et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest. 115, 3564–3572 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Mason, B. L., Wang, Q. & Zigman, J. M. The central nervous system sites mediating the orexigenic actions of ghrelin. Annu. Rev. Physiol. 76, 519–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Cabral, A., Valdivia, S., Fernandez, G., Reynaldo, M. & Perello, M. Divergent neuronal circuitries underlying acute orexigenic effects of peripheral or central ghrelin: critical role of brain accessibility. J. Neuroendocrinol. 26, 542–554 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Wang, Q. et al. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Mol. Metab. 3, 64–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Malik, S., McGlone, F., Bedrossian, D. & Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Haissaguerre, M., Saucisse, N. & Cota, D. Influence of mTOR in energy and metabolic homeostasis. Mol. Cell. Endocrinol. 397, 67–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Woods, S. C., Seeley, R. J. & Cota, D. Regulation of food intake through hypothalamic signaling networks involving mTOR. Annu. Rev. Nutr. 28, 295–311 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Gulati, P. & Thomas, G. Nutrient sensing in the mTOR/S6K1 signalling pathway. Biochem. Soc. Trans. 35, 236–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Cota, D. et al. Hypothalamic mTOR signaling regulates food intake. Science 312, 927–930 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Harlan, S. M., Guo, D. F., Morgan, D. A., Fernandes-Santos, C. & Rahmouni, K. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 17, 599–606 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Stevanovic, D. et al. Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Mol. Cell Endocrinol. 381, 280–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Kocalis, H. E. et al. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol. Metab. 3, 394–407 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Hay, N. Interplay between FOXO, TOR, and Akt. Biochim. Biophys. Acta 1813, 1965–1970 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Sasaki, T. & Kitamura, T. Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocr. J. 57, 939–946 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Laplante, M. et al. DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab. 16, 202–212 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  204. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  205. Meyer, C. W. et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1396–R1406 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 1–64 (1984).

    Article  CAS  PubMed  Google Scholar 

  207. Labbe, S. M. et al. In vivo measurement of energy substrate contribution to cold-induced brown adipose tissue thermogenesis. FASEB J. 29, 2046–2058 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Rosenwald, M. & Wolfrum, C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 3, 4–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Bordicchia, M. et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Invest. 122, 1022–1036 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  PubMed  Google Scholar 

  216. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Zingaretti, M. C. et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 23, 3113–3120 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Ouellet, V. et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J. Clin. Endocrinol. Metab. 96, 192–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  222. Blondin, D. P. et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99, E438–E446 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993).

    Article  CAS  PubMed  Google Scholar 

  227. Feldmann, H. M., Golozoubova, V., Cannon, B. & Nedergaard, J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9, 203–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  228. Richard, D. & Picard, F. Brown fat biology and thermogenesis. Front. Biosci. 16, 1233–1260 (2011).

    Article  CAS  Google Scholar 

  229. Drubach, L. A. et al. Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J. Pediatr. 159, 939–944 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Wang, Q. et al. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS ONE 6, e21006 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Cypess, A. M., Haft, C. R., Laughlin, M. R. & Hu, H. H. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 20, 408–415 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Chechi, K., Nedergaard, J. & Richard, D. Brown adipose tissue as an anti-obesity tissue in humans. Obes. Rev. 15, 92–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  233. Lidell, M. E., Betz, M. J. & Enerback, S. Brown adipose tissue and its therapeutic potential. J. Intern. Med. 276, 364–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  234. Whittle, A., Relat-Pardo, J. & Vidal-Puig, A. Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol. Sci. 34, 347–355 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Richard.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, D. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat Rev Endocrinol 11, 489–501 (2015). https://doi.org/10.1038/nrendo.2015.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing